• Title/Summary/Keyword: Amount of fertilizer

Search Result 1,083, Processing Time 0.022 seconds

Influence of Fly Ash Application on Content of Heavy Metals in the Soil -III. Content Change in the Rice and Soybean by the Application Rate (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속(重金屬) 함량(含量)에 미치는 영향(影響) -III. 쌀과 콩중(中)의 중금속(重金屬) 함량변화(含量變化))

  • Kim, Bok-Young;Jung, Goo-Bok;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.220-225
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents in the grain. Rice was cultivated on the two types of paddy field, clay loam and sandy loam soil, with 0, 4, 8, 12t/10a of anthracite fly ash and bituminous coal fly ash, respectively. And soybean was cultivated on the same types of upland field with those of 0, 3, 6, 9t/10a, respectively. Also. rice and soybean were cultivated the same types of paddy and upland field with those ashes of 0, 12ton/10a and 0, 9ton/10a, yearly for three years. At the harvest time, the heavy metal contents in rice and soybean were Investigated. The results were summarized as follows : 1. Amount of application. 1) The contents of Cd in brown rice increased in the clay loam soil. Cr and Ni increased sandy loam soil with the application of anthracite fly ash. 2) The contents of Zn in rice increased in the sandy loam soil with the application of bituminous coal fly ash. 3) The contents of Cu in soybean increased with the application of anthracite and bituminous coal fly ash, but Zn, Pb, Cr and Ni increased only with the bituminous. 2. Successive application. 1) The contents of Cd in brown rice increased in the clay and sandy loam soil, however Cu, Zn, Ni, Cr and Fe increased only in sandy loam soil with the anthracite fly ash. 2) The contents of Cr in soybean were increased in the clay and sandy loam soil, but Cu, Fe increased only sandy loam soil with anthracite fly ash. 3) The contents of Cd, Zn, and Cr in brown rice increased in the clay and sandy loam soil, but those of Cu, Mn increased only in the sandy loam soil with application of bituminous. 4) The contents of Cd, Pb, and Cr in soybean increased in the sandy loam soil with the application of bituminous coal fly ash.

  • PDF

The Analysis of Environmental Loads and Material Recycling of the Nutrients by the Livestock Wastewater Originating from Imported Feeds (수입사료에 의한 가축분뇨 물질순환 및 환경부하 분석)

  • Yoon, Young-Man;Lee, Sang-Eun;Chung, Doug-Young;Cho, Gyu-Yong;Kim, Jong-Duk;Kim, Chang-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.2
    • /
    • pp.139-154
    • /
    • 2008
  • The nearly 75% of animal feed materials used for livestock production are imported every year in Korea. Most of imported feed ingredients are concentrated feeds such as com, wheat, soybean, soybean meal, etc. and they are used as the source materials for the production of assorted feed. The imported concentrated feeds are high in nitrogen and phosphorus. Therefore, the consistent import of feed ingredients may cause an increase of nutrient deposit in our agricultural ecosystem. In the current review, it was discussed with the situation of the feed importation and its nutritional composition to evaluate the nutrient load by the imported feeds onto agricultural ecosystem. The nutrient load caused by imported feeds in agricultural environment was compared with the nutrient demand for crop production. The amounts of N, $P_2O_5\;and\;K_2O$ introduced by the imported fteds in Korea were 371, 140 and 143 Ktons. And, the N, $P_2O_5\;and\;K_2O$ loads excreted from imported feeds in livestock were 148, 84 and 86 Ktons of N, $P_2O_5\;and\;K_2O$ and These nutrient loads by the imported feeds are at the percentage of N 52%, $P_2O_5$ 52% and $K_2O$ 42% in the comparison of total nutrient amounts excreted from livestock animals in Korea. The 82.3% of nutrients excreted from livestock was recycled to crop land as compost and liquid fertilizer, and the others were discharged to river after water treatment processing or disposed to ocean. Also, passing through the recycling process far the production of compost and liquid fertilizer, the amount of nutrients was reduced by the ammonia vaporization of livestock feces and urine. Accordingly, N 81, $P_2O_5$ 74 and $K_2O$ 76 Ktons in the nutrients excreted from livestock were estimated to be utilized in the crop land. Consequently, it was estimated that 44, 48 and 69 Ktons of N, $P_2O_5\;and\;K_2O$ were taken up with crops in the consideration of the ratio of mineralization, and the amounts of leached or deposited N, $P_2O_5\;and\;K_2O$ in crop land were estimated to be 37, 27 and 7 Ktons, respectively. It is estimated that 12%, 34% and 48% of N, $P_2O_5\;and\;K_2O$ introduced by the imported feeds were used by crops, and 10%, 34% and 5% of N, $P_2O_5\;and\;K_2O$ were leached or deposited in agricultural ecosystem. Therefore, considering the leached and deposited amounts of N, $P_2O_5\;and\;K_2O$ originated from the imported feed ingredients, the consistent import of feeds may gradually increase the nutrient load onto agricultural ecosystem.

Effects of Nitrogen Fertilizers on Growth and Nutrient Uptake of Rice Plants and Chemical Properties of Paddy Soil (질소질(窒素質) 비종(肥種)이 수도(水稻)의 생육(生育)과 양분흡수(養分吸收) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Lim, Sun-Uk;Kim, You-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.232-241
    • /
    • 1984
  • For the purpose of investigating the effect of chemical composition of nitrogenous fertilizers such as urea, ammonium sulfate, ammonium phosphate(dibasic) and aqua-ammonia on growth, yield, efficiency and chemical properties of paddy soil this study was carried out at the same nitrogen concentration through field experiment. The results obtained was summarized as follows. 1. Nitrogenous fertilizers had an effect on plant height at heading stage, plant weight at harvest and No. of spikelet per panicle of rice plants in decreasing order: Ammonium sulfate > Diammonium phosphate > Urea > Ammonia water. But they didn't effect on culm length, spike length, dry matter weight, No. of grain per spike, ripening ratio and weight of 1000 grains of rice plants. 2. The absorbed amount of nitrogen and that of sulfur and nitrogen availability were highest in ammonium sulfate application and lowest in ammonia water application and these were positively correlated with yield. 3. The influence of nitrogenous fertilizers on nitrogen and sulfur efficiency and translocation efficiency was insignificant but that of ammonium sulfate on nitrogen efficiency was higher than that of the others. 4. The effect of nitrogenous fertilizers on a basic chemical properties of paddy soil experimented such as pH, C.E.C, exchangeable cation and organic matter was insignificant. But the sulfur content of ammonium sulfate application and phosphorous content of diammonium phosphate application were higher than that of the others.

  • PDF

Effectiveness of Magnesium-and Boron-Enriched Complex Fertilizer(14-10-12-3-0.2) on the Pasture Maintenance and Management II. Changes in the forage yields, yield components, and chemical compositions in a mixed grass-clover and a pure grass swards (초지관리용 복합비료(14-10-12-3-0.2)의 비효시험 II. 총건물수량, 수량구성요소 및 목초의 영양성분에 미치는 영향)

  • 정연규;이혁호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.4
    • /
    • pp.252-257
    • /
    • 1991
  • In a two-year's field experiment, the effectiveness of magnesium-and boron-enriched complex fertilizer (CF, N-P$_2$O$_{5}$-K$_2$O-MgO-B$_2$O$_3$: 14-10-12-3-0.2) on the maintenance and management of hilly pasture was studied. The effects of CF and some straight fertilizers (SF) on forage yields, yield components, and chemical compositions were compared in a mixed grass-clover (orchardgrass, tall fescue, kentucky bluegrass, and ladino clover) and a pure grass (orchardgrass) swards. The results are summarized as follows: 1. Considerably higher average dry matter yields were obtained in the CF plots than in the SF plots. In the mixed sward, the yields of whole mixed forages were inclosed by 10.8-14.5%, grasses by 11%, and legume by 21.5-31.0% by the use of the CF over the use of SF. In the pure grass sward, the yield of grasses was increased by 7.0-21.8%. 2. The rates of yield increase due to the application of CF were dependent on such factors as types of sward (pure or mixed), application rates of NPK, and forage species. The increase of forage yields due to the CF was greater at the normal rate of NPK application than at lower application rate, and in legume forage than in grass forage. 3. The crude fiber, crude fat and NFE contents of forages were not significantly changed by different treatments. However, the forage of CF plot at the normal application rate of NPK contained relatively higher amount of crude protein and crude fat compared with the forages of other plots. 4. There were no significant differences in the contents of mineral nutrients in forages among the different treatments. In spite of the application of Mg-enriched CF, the contents of Mg in soils and forages were below the optimum level.

  • PDF

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Effects of the Fractionated Raw Cow Manure on Mobility of NO3--N in A Double-Layered Soil Column with Constant Water Head (상존수두상태의 이중토양토주에서 질산태질소 이동에 대한 분쇄우분의 효과)

  • Chung, Doug-Young;Lee, K.S.;Baek, M.J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • Influence of various rates of fractionated raw cow manure on hydraulic conductivity of the soil was observed. The fractionated raw cow manure(hereafter as FRCM) incorporated into soil. The hydraulic conductivity was measured for the double-layered soil while maintaining the water head by 5 cm over the soil surface. The influence on the mobility of $NO_3{^-}$-N transformed from the FRCM was analyzed. The upper layers (Wolgok series) were made with FRCM ranging from 0% to 10.4 % on weight basis for air-dried soil while the organic matter in the bottom layers (Chungwon series) was removed by combustion. The initial bulk densities for both layers were adjusted to $1.25g\;cm^{-3}$. In this experiment the $K_{sat}$ for the upper layer gradually decreased from $4.71{\times}10^{-3}cm\;min^{-1}$ to $1.2{\times}10^{-3}cm\;min^{-1}$ with increasing the rate of the FRCM from 0 % to 10.4%, while the Ksat of the bottom layer was maintained as $3.7cm\;min^{-1}$. For the double-layered soil columns, the $K_{sat}$ decreased with increasing rate of FRCM at the upper layer from $1.7{\times}10^{-3}cm\;min^{-1}$ to $8{\times}10^{-4}cm\;min^{-1}$ as the rate of organic matter increased from 0 % to 10.4 %, while it took almost 7 days to 64 days to obtain the steady state $K_{sat}$ The elution patterns of $NO_3{^-}$-N and $NH_4{^+}$-N showed that the amounts of both $NO_3{^-}$-N and $NH_4{^+}$-N rapidly approached to the maximum ranging from $14.8mmol_c\;kg^{-1}$ to $0.58mmol_c\;kg^{-1}$ as the rate of FRCM decreased from 10.7 % to 0 % which is equivalent to indigenous amount of $NO_3{^-}$-N and $NH_4{^+}$-N. And the amounts of $NO_3{^-}$-N were approximately three or four time than those of $NH_4{^+}$-N, indicating that the transformation rate of $NO_3{^-}$-N was improved by the higher FRCM rate. Thus, the ability of a soil to supply N can be predicted from its mineralization parameters and leaching potentials influenced by water flow regime in soil.

  • PDF

R and K Factors for an Application of RUSLE on the Slope Soils in Kangwon-Do, Korea (강원도 경사지 토양 유실 예측용 신USLE의 적용을 위한 강수 인자와 토양 침식성 인자의 검토)

  • Jung, Yeong-Sang;Kwon, Young-Ki;Lim, Hyung-Sik;Ha, Sang-Keun;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • Rainfall factor. R, and soil factor, K were estimated to use the Revised Universal Soil Loss Equation (RUSLE) to predict the amount of soil erosion from a land on slope in Kangwon-do, Korea. The average of R factor was 405 with a range from 251 to 601. The R factor differed among regions. The R factor at Taegwalryung, in the highland region, was 409 and those at Inje and Hongchon, in the mid mountainous regions, ranged from 310 to 493. The R factors at Wonju and Chuncheon, in the plain regions, ranged from 505 to 601. The R factors at Sokcho, Kangnung and Samchok, in the east coastal region, which ranged from 251 to 368, were lowee than those in the western part of the Taebaeg Mountains. The R factor during the winter including the effect of winter freezing and thawing was 12 to 30% of the annual average value in the east coastal and highland regions, while that in the western part of Taebaeg Mountains was lower than 7%. The average of K factor in the surface soil was 0.21 with a range from 0.06 to 0.42. The K factors of Odae and Weoljeong serieses were the lowest, while that of Imog was the highest. The average of K factor in the subsoil was 0.28 with a range from 0.07 to 0.45. The K factor of the subsoil was 1.3 times higher than that of top soil. The average of K factor in he soil including the effect of the gravel covering and percolation was 0.18 with a range from 0.03 to 0.33. In contrast. the K factor excluding the effect of the gravel covering was lower than this. The average of K factor in the frozen subsoil was 0.33, which was 1.6 times higher than that of the non frozen subsoil.

  • PDF

Studies on the plant character of high productive paddy in connection with cations (Ca, Mg, K) content in flag leaves and soil conditions (지엽중(止葉中)의 염기함량(鹽基含量)으로본 고위수량(高位收量)벼의 특성(特性)과 토양(土壤) 조건(條件)에 관(關)한 연구(硏究))

  • Oh, Wang Keun;Hwang, Young Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.1
    • /
    • pp.31-35
    • /
    • 1975
  • In order to gain information on the plant characteristics of high yielding paddy from the point of view of mineral nutrition and to learn more about soil conditions under which high yields are produced a number of soil samples collected from the field experiment carried out in The City College of Seoul were analysed. In addition, a laboratory experiment carried out to support the field experiment was also analysed. Results obtained are as follows: 1. Generally, the higher the yield of paddy, the higher is the potassium content in flag leaves, whereas the reverse is true for the content of Ca and Mg in the leaves. From these facts it can conceivably be said that the high yielding paddy should absorb a large quantity of potassium and a lesser quantity of calcium and magnesium in the reproductive stage. 2. Leaves of paddy which produced yields over 600kg/10a (a comparatively high yield in the experiment) contained 30-35mg/100g of potassium, less than 25me/100g of calcium, and 10me/100g of magnesium which brings the ratio of $K/{\sqrt{Ca+Mg}}$ over 5. 3. Correlation studies indicated a remarkable relationship between the paddy yield and exchangeable potassium in soil samples taken after harvesting. A similar relationship was observed between the yield of paddy and $K/{\sqrt{Cae+Mge}}$ ratio of the soil samples. 4. A regression between yield of padcy (Y) and exchangeable potassium (Ke) or $K/{\sqrt{Ca+Mg}}$ in soil samples taken after harvesting was shown to be; Y=183.95+2135.86Ke $$Y=352.45+3114.454\;K/{\sqrt{Ca+Mg}}$$ 5. The regression between exchangeable potassium (Ke) in soil samples taken after harvesting and the amount of lime (L) and potassium (P) to be applied is; $$Ke=0.1246+0.00007037L+0.004444P+0.000004444L{\cdot}P$$.

  • PDF

Effect of Soil Amendment Application on Yields and Effective Components of Chrysanthemum boreale M. (산국의 수량과 유효성분에 대한 토양개량제의 효과)

  • Lee, Kyung-Dong;Lee, Yong-Bok;Yang, Min-Suk;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.27-37
    • /
    • 2002
  • With increasing the concerns of health improving foods. the demands of C. boreale M., which is a perennial flower and has been historically used for a natural medicine, become higher, recently, However, wild C. boreale M. collected in a mountatinous area is limited and not enough to cover all demands. The cultivation system and fertilization strategy are required to produce much amount of C. boreale M. with a good quality. We investigated the effects of soil amendment application on plant growth and effective components of C. boreale M. to develop efficient cultivation system. C. boreale M. was cultivated in a pot scale, and lime, fly ash, poultry manure compost and swine manure compost as an amendment applied with rate of 2, 20, 150 and $150Mg\;ha^{-1}$, respectively. Here, chemical fertilizers were applied with the same level ($N-P_2O_5-K_2O=150-80-80kg\;ha^{-1}$) in all treatments. Flower yields of C. boreale M., edible part as a natural medicine, were increased to 37 and 27% by swine and poultry manure compost application, respectively. Poultry manure compost amending (NPK+PMC) increased 3.6 times of proline content and 58% of total amino acids in the flower part more than chemical fertilization (NPK). But the contents of amino acids did not increase with amending liming materials like lime and fly ash. Cumambrin A, which is a sesquiterpene compound and has the effect of blood-pressure reduction, increased to 34 and 19% by lime and fly ash applications, respectively. Cumambrin A was significantly correlated with calcium content in the flower part of C. boreale M. Conclusively, soil amendments like compost and liming materials might contribute to increase the yields and quality of C. boreale M.

Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil (하해혼성 충적층 논토양 작토층과 경반층의 토양특성)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.