• Title/Summary/Keyword: Amount of Heat

Search Result 2,370, Processing Time 0.04 seconds

Energy Budgets for the Developmental Stages of Palaemon macrodactylus (Palaemon macrodactylus의 생활사에 따른 에너지 수지)

  • CHIN Pyung;KIM Heung-Yun;SIN Yun-Kyong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.341-358
    • /
    • 1992
  • In order to estimate energy budgets of Palaemon macrodactylus, larvae of the shrimp were reared in the laboratory at constant conditions $(25^{\circ}C: 31-32\%o),$ and then juvenile to adult of the shrimp were reared at $15^{\circ}C\;and\;25^{\circ}C$ in the laboratory. Energy used by the reared shrimps were calculated from estimates of data on feeding, growth, molting, metabolism, nitrogen excretion, and energy content. Juveniles and adults reared in the laboratory, which fed on Artemia nauplii, had an average daily growth rates of 0.079 mm/day at $15^{\circ}C\;and\;of\;0.122mm/day\;at\;25^{\circ}C$. The average growth factor* of P. macrodactylus males and females ranged from $3.2\%$ for adult to $13.2\%$ for juveniles individuals, respectively. Intermolt periods were related to body size of the shrimp and to temperature. Average laboratory growth curves were calculated from data on growth factors and intermolt periods to body size of the shrimp at $15^{\circ}C\;and\;25^{\circ}C$. The calorie contents of the shrimp, their molts, eggs and larvae were determined by biochemical composition and oxygen bomb calorimetry. The average amount of energy used in growth for larvae and juvenile to adult were 4.94 cal and 4.55 cal per dry weight in milligram, respectively. The ammount of oxygen used in metabolism was calculated from size, temperature-specific respiration rate. To convert the ammount of oxygen used in respiration into the equivalent energy lost heat was estimated from the data on chemical composition for the larvae and adult, the values was 4.58 cal/ml $O_2$. The energy content per egg was 0.078 cal. The assimilation efficiency estimated by nitrogen content of food and egested faeces gave $61.5\%$ for the larvae. The efficiencies for juvenile to adult ranged between $79.4\%$ and $90.1\%$ The gross growth efficiencies $(K_1)$ and net growth efficiencies $(K_2)$ of P macrodactylus showed $18.33\%\;and 32.63\%$ for total larval stages, ranged from $21.30\%\;to\;31.04\%\;and\;from\;30.03\%\;to\;39.34\%$ for juvenile to adult, respectively.

  • PDF

Changes in Characteristics of Brown Rice (Goami) Alcohol Fermentation By-Product by Cellulase (Cellulase처리에 따른 현미(고아미) 알코올발효 부산물의 특성 변화)

  • Woo, Seung-Mi;Jang, Se-Young;Park, Nan-Yong;Kim, Tae-Young;Yeo, Soo-Hwan;Kim, Sang-Burm;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • To utilize non-heat treated alcoholic by-products of brown rice (Goami) as food sources, the quality characteristics changes according to the treatment conditions of cellulase were evaluated. Results showed that the increase of hydrolysis temperature correspondingly increased the soluble solids and total sugar amounts in the by-products of Goami, and total dietary fiber amount was found to be around 0.67% Reducing sugar concentration was the highest at the hydrolysis temperature of $70^{\circ}C$. Maltooligosaccharides amounts were detected to be the highest at the hydrolysis temperature of $80^{\circ}C$ and were also, maltopentose and maltopentose were found. In the soluble solid, total dietary fiber, reducing sugar and total sugar according to the cellulase concentration, the content of hydrolysates with enzyme were higher than control, and the content of hydrolysates with enzyme was similar (6.30 and 0.69% 3,600 and 5,500 mg% respectively). The content of maltooligosaccharides was increased with the increase of enzyme concentration, and the content was similar at more than 0.6%(w/w) of enzyme concentration. The soluble solids and total dietary fiber by hydrolysis time were found to be 6.25% and 0.70%, respectively at more than 60 min. of hydrolysis. The content of reducing sugar, total sugar and maltooligosaccharides were increased with the increase of hydrolysis time, and the content was similar at more than 120min. of hydrolysis (3,800, 5,680 and 1,950 mg% respectively). Based upon these results, the byproducts of Goami are expected to be valuable as various food sources showing the highest dietary fiber and maltooligosaccharides contents by the hydrolysis at $80^{\circ}C$ for 120 min. with the addition of 0.6%(w/w) of cellulase.

The Effect of HCl Gas on Selective Catalytic Reduction of Nitrogen Oxide (질소산화물의 선택적 환원 제거시 염화수소기체가 촉매에 미치는 영향)

  • Choung, Jin-Woo;Choi, Kwang-Ho;Seong, Hee-Je;Chai, Ho-Jung;Nam, In-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.609-617
    • /
    • 2000
  • This study is aimed at investigating an effect of HCl gas on selective reduction of NOx over a CuHM and $V_2O_5-WO_3/TiO_2$ catalyst. SCR process is the most effective method to remove NOx, but catalyst can be deactivated by the acidic gas such as HCl gas which is also included in flue gas from the incinerator. In dry condition of flue gas, the CuHM catalyst treated by HCl gas has shown higher NO removal activity than the fresh catalyst. The activity of the catalyst can be restored by treating at $500^{\circ}C$. On the contrary. $V_2O_5-WO_3/TiO_2$ catalyst is obviously deactivated by HCl and the deactivation increases in proportion to the concentration of HCl gas. The deactivated catalyst is not restored to it's original activity by heat treatment for regeneration. In wet flue gas stream, the CuHM catalyst has shown lower activity than fresh catalyst and $V_2O_5-WO_3/TiO_2$ catalyst was severely deactivated by HCl treatment. The activity loss of catalysts are mainly due to the decrease of Br$\ddot{o}$nsted acid site on the catalyst surface by $NH_3$ TPD. The change of BET surface area of CuHM catalyst after the reaction isn't observed but $V_2O_5-WO_3/TiO_2$ catalyst is observed. The amount of $Cu^{{+}{+}}$ and $V_2O_5$ is decreased after the reaction. From these results, it is expected that CuHM catalyst should be better than $V_2O_5-WO_3/TiO_2$ catalyst for its application to the incineration of flue gas.

  • PDF

Efficiency of ceramic bracket debonding with the Er:YAG laser (세라믹 브라켓의 제거 시 Er:YAG 레이저의 효능)

  • Suh, Chung-Hwan;Chang, Na-Young;Chae, Jong-Moon;Cho, Jin-Hyoung;Kim, Sang-Cheol;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.213-224
    • /
    • 2009
  • Objective: The aim of this study was to find out whether Er:YAG laser can aid in debonding ceramic brackets, and to see what kind of method will be the most appropriate for debonding. Methods: One hundred and ninety teeth, monocrystalline brackets ($MISO^{TM}$, HT, Ansan-Si, Korea), polycrystalline brackets ($Transcend^{TM}$ series 6000, 3M Untek, Monrovia, CA, USA) and the KEY Laser3 (KavoDental, Biberach, Germany) were used. Experimental groups were classified according to the type of ceramic brackets, and the amount of laser energy (0, 140, 300, 450, 600 mJ). After applying laser on the bracket at two points at 1 pulse each, the shear bond strength was measured. The effect of heat caused by laser was measured at the enamel beneath the bracket and pulp chamber. After measuring the shear bond strength, adhesive residue was evaluated and enamel surface was investigated using SEM. Results: All ceramic bracket groups showed a significant decrease in shear bond strength as the laser energy increased. The greatest average temperature change was $3.78^{\circ}C$ on the enamel beneath the bracket and $0.9^{\circ}C$ on the pulp chamber. Through SEM, crater shape holes caused by the laser was seen on the enamel and adhesive surfaces. Conclusions: If laser is applied on ceramic brackets for debonding, 300 - 450 mJ of laser energy will be safe and efficient for monocrystalline brackets ($MISO^{TM}$), and about 450 mJ for polycrystalline brackets ($Transcend^{TM}$ series 6000).

Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System (산소 전극 시스템에 사용되는 polysulfone막에 대한 연구)

  • Hong, Suk In;Kim, Hyun Joon;Park, Hee Young;Kim, Tae Jin;Jeong, Yong Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.877-887
    • /
    • 1996
  • The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

  • PDF

Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation (양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절)

  • Lee, Eun Kyung;Cho, Kanghee;Kim, Sang Kyum;Lim, Jong Sung;Kim, Jong-Nam
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture (3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성)

  • Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.555-560
    • /
    • 2023
  • Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.

A Study on the Application Direction of Finite Element Analysis in the Field of Packaging through Research Trend Analysis in Korea (국내 연구 동향 분석을 통한 포장분야에서 유한요소해석의 적용 방향에 관한 고찰)

  • Lee, Hakrae;Jeon, Kyubae;Ko, Euisuk;Shim, Woncheol;Kang, Wookgun;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • Proper packaging design can meet both the environmental and economic aspects of packaging materials by reducing the use of packaging materials, waste generation, material costs, and logistics costs. Finite element analysis(FEM) is used as a useful tool in various fields such as structural analysis, heat transfer, fluid motion, and electromagnetic field, but its application in the field of packaging is still insufficient. Therefore, the application of FEM to the field of packaging can save the cost and time in the future research because it is possible to design the package by computer simulation, and it is possible to reduce the packaging waste and logistics cost through proper packaging design. Therefore, this study investigated the FEM papers published in Korea for the purpose of helping research design using FEM program in the field of packaging in the future. In this paper, we analyzed the 29 papers that were directly related to the analysis of FEM papers published in domestic journals from 1991 to 2017. As a result, we analyzed the research topic, FEM program, and analysis method using each paper, and presented the direction that can be applied in future packaging field. When the FEM is applied to the packaging field, it is possible to change the structure and reduce the thickness through the stress and vibration analysis applied to the packaging material, thereby reducing the cost by improving the mechanical strength and reducing the amount of the packaging material. Therefore, in the field of packaging research in the future, if the FEM is performed together, economical and reasonable packaging design will be possible.

Extraction and Characteristics of Purple Sweet Potato Pigment (자색고구마 색소의 추출과 특성)

  • Kim, Seon-Jae;Rhim, Jong-Whan;Lee, Lan-Sook;Lee, Joon-Seol
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.345-351
    • /
    • 1996
  • Studies on extraction and color characteristics of purple sweet potato (PSP) pigment were performed to provide the basic information for the utilization of PSP as a new source of natural food colorant. PSP pigment was extracted well with the polar solvents such as distilled water, ethanol, and methanol. but hardly extracted with the non-polar solvents. Among the tested solvents, 20% ethanol solution containing 0.1% citric acid was found to be the most efficient for extraction of the pigment from PSP. PSP contained high amount of pigment not only in the epidermis but also in the flesh of the potato. The PSP pigment was heat stable even under pretreatments such as autoclaving and blanching of the potato before extraction. The optimum temperature of the extraction for the PSP Pigment was decided to be $30^{\circ}C$ by considering the stability and the rate of extraction. The pigment was markedly influenced by the change of pH. The color of the pigment solution was red at the pH range of $1.0{\sim}3.0$, became blue at $7.0{\sim}8.0$, then turned green at $9.0{\sim}10.0$. A characteristic batho-chromic shift of the pigment solution was observed as the pH of the solution increased.

  • PDF

A Study on Catalytic Pyrolysis of Polypropylene with Ni/sand (Ni/sand를 이용한 폴리프로필렌 촉매 열분해 연구)

  • Kim, Soo Hyun;Lee, Roosse;Sohn, Jung Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.232-239
    • /
    • 2021
  • In order to develop a novel system named "thermal medium and gas circulation type pyrolysis system," this study was conducted to obtain basic data for process simulation before performing the pyrolysis experiment. Polypropylene (PP) was chosen as model material in the basic pyrolysis experiment instead of waste plastic and fluidized sand (hereinafter referred to as "sand"), and it was used as a heat transfer material in the "thermal medium and gas circulation type pyrolysis system." Ni was impregnated as an active catalyst on the sand to promote catalytic pyrolysis. The basic physical properties of PP were analyzed using a thermogravimetric analyzer, and pyrolysis was performed at 600 ℃ in an N2 atmosphere to produce liquid oil. The distribution of the carbon number of the liquid oil generated through the catalytic pyrolysis reaction was analyzed using GC/MS. We investigated the effects of varying the pyrolysis space velocity and catalyst amount on the yield of liquid oil and the carbon number distribution of the liquid oil. Using Ni/sand, the yield of liquid oil was increased except with the pyrolysis condition of 10 wt% Ni/sand at a space velocity of 30,000 h-1, and the composition of C6 ~ C12 hydrocarbons increased. With increases in the space velocity, higher yields of liquid oil were obtained, but the composition of C6 ~ C12 hydrocarbons was reduced. With 1 wt% Ni/sand, the oil yield obtained was greater than that obtained with 10 wt% Ni/sand. In summary, when 1 wt% Ni/sand was used at a space velocity of 10,000 h-1, the oil yield was 60.99 wt% and the composition of C6 ~ C12 hydrocarbons was highest at 42.06 area%.