• Title/Summary/Keyword: Amount of Heat

Search Result 2,375, Processing Time 0.039 seconds

Influence of Low Stage Refrigerant Charge Amount on the Performance of Cascade Heat Pump (캐스케이드 열펌프의 저단 사이클 충전량 변화에 따른 성능 특성)

  • Park, Seung Byung;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • In this study, the optimization and performance characteristics of a cascade heat pump system was analyzed with the variation of low stage refrigerant charge amount. The cascade heat pump was designed and constructed with R134a and R410A as the refrigerant for high stage and low stage cycle, respectively. Experiments were conducted by varying the low stage charge amount and the performance characteristics of the cascade heat pump were studied. The refrigerant charge amount of the low stage cycle was varied between the ranges of -15% and +10% of the optimum charge amount. The performance variation experienced in the cascade heat pump due to the variation of refrigerant charge amount shows greater effect in the undercharge regions than the overcharge regions. COP reduction in the undercharge region is larger than the decrease in the overcharge region. Some cycle variation such as power consumption and cycle pressure according to low stage refrigerant charge amount showed different trends comparing with those according to high stage refrrgerant charge amount. Therefore, the optimum charge amount of the cascade heat pump should be determined based on the experimental data obtained by the variation of high and low stage refrigerant charge amount.

A Study on the Reliability of District Heat Measuring Devices for Ground Source Heat Pump Systems (지열원 히트펌프 시스템에 적용되고 있는 난방용 적산열량계의 신뢰성 평가에 관한 연구)

  • Kang, Hee Jeong;Lee, Hyun Su;Jang, Myung Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • A ground source heat pump system should be equipped with devices to measure the generated heating or cooling heat amount in Korea. Generally, the heat measuring devices have been developed to estimate consumed heat amount in residential or commercial buildings from a central air-conditioning system or a district heating system. In this study, two representive heat measuring devices used for buildings were selected, and the accuracy of them were experimentally estimated at the ground source heat pump operating conditions. The obtained heat amounts from the heat measuring devices were deviated within 4.3% comparing with the precise values calculated from an accredited test facility. Even though the accumulated heat amount values of the heat measuring devices had a small difference comparing with the precise values, the temperatures of heat measuring devices showed greatly different values comparing with the precise temperature. Therefore, it is highly recommended to develop the heat measuring devices which is appropriate for the ground source heat pump systems.

Factors Affecting Performance of a Proto type Windheat Generation System

  • Kim Y.J.;Yun J.H.;Ryou Y.S.;Kang G.C.;Paek Y.;Kang Y.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.22-26
    • /
    • 2005
  • A wind-heat generation system was developed and the system consisted of an electric motor, a heat generation drum, a heat exchanger, two circulation pumps and a water storage tank. The heat generation drum is an essential element determining performance of the system. Frictional heat was generated by rotation of a rotor in the drum filled with a working fluid, and the heat stored in the fluid was used to increase water temperature through the heat exchanger. Effects of some factors such as rotor shape, kind and amount of working fluid, rotor rpm and water flow rate in the heat exchanger, affecting the system performance were investigated. Amounts of heat generated were varied, ranging from 126,000 to 32,760 kJ/hr, depending on combination of the factors. Statistical analysis using GLM procedure revealed that the most influential factor to decide the system performance was amount of the fluid in the drum. Experiments showed that the faster the speed of the rotor, the greater heat was obtained. The greatest efficiency of the heat generation system, electric power consumption rate vs gained heat amount of water, was about 70%. Though the heat amount was not enough for plant bed heating of a 0.1-ha greenhouse, the system would be promising if some supplementary heat source such as air- water heat pump is added.

  • PDF

Influence of the Operation Modes on the Optimum Refrigerant Charge Amount of a Heat Pump (다양한 운전모드에서 물대물 열펌프의 성능 및 최적충전량 변화에 관한 연구)

  • Boahen, Samuel;Lee, Kwang Ho;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • As heat pump application has been extending to residential, commercial, and industrial fields, the heat pump should have many operation modes. It is required to optimize refrigerant charge amount at all operation modes in order to enhance the annual performance of heat pumps. In this study, the performance analysis of the heat pump which has cooling, heating, cooling-hot water, heating-hot water, and hot water modes was executed with the variation of refrigerant charge amount. As the refrigerant charge amount changed, the maximum COPs of the heat pump at different operation modes were changed within ${\pm}10%$. Therefore, it is highly recommended to select optimum charge amount for the heat pump based on the analysis of annual load for each operation modes.

An Experimental Study on the Heat Transfer Characteristics of Stainless-Acetone Heat Pipe (스테인리스-아세톤 히트파이프의 열전달 특성에 관한 실험적 연구)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.489-496
    • /
    • 2000
  • This study was conducted in order to find an ideal working fluid kind and a proper filling amount in the heat pipe as well as an inclined angle of heat pipe when they are placed to recover exhaust gas heat in the hot air heater. Followings are the findings of this research. 1. Of the four different working fluids-gasoline kerosene distilled water and acetone-acetone filled heat pipe showed the best performance giving out more homogeneous temperature profile on the radiating part than the kerosene and gasoline heat pipe an carrying out heat transmitting function better than the distilled water heat pipe by 10~2$0^{\circ}C$ higher on the radiating part. Acetone would be a good choice for recycling of exhaust gas heat in the hot air heater. 2. Of the filling amount of working fluid inside the heat pipes dry-out situations possible caused by insufficient filling were found in the filling amount of 5, 7.5 and 10% heat pipes as heat supply rate increases gradually in the range of 50 to 15kJ/sec. but no dry-out and stabilized heat transmitting performance occurred in the heat pipes of 12.5 and 15% filling at the same heat supply rate. It recommends that filling amount shall exceed 12.5% at least with the working fluids of this experiment. 3. The test revealed that the heat transmitting performance of heat pipe was more affected by filling amount rather than inclined angle.

  • PDF

Comparative Analysis on Heat Radiation of LED Luminaires (LED 등기구의 발열량 비교분석)

  • Kim, Dong-Geon;Kim, Il-Kwon;Yu, Seon-Young;Kwon, Wook;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1530-1535
    • /
    • 2011
  • Heat radiation of LED luminaires has risen a problem when applied indoor. LEDs can save energy with higher efficacy than other light sources. However, their heat radiation may increase power consumption for air-conditioning. Therefore, this paper carried out a comparative analysis on the amount of heat radiation for MR16, E26 bulb, and down-light which will be replaced to LED luminaires. Heat amount of LED-MR16 and LED-downlight was 48% and 87.5% lower than that of conventional lamps, halogen MR16 and E26 CFL, respectively. Consequently, the heat amount and indoor temperature were proportional to the power consumption of luminaire. Therefore, the use of LED luminaire can reduce the amount of heat radiation as well as power consumption.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.538-541
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump are investigated at various operating conditions. Cooling capacity of the heat pump system is strongly dependent on load conditions. The heat pump system is very sensitive with a variation of refrigerant charge amount. But, the performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

An Experimental Study on the Performance of an Inverter Heat Pump with a Variation of Frequency and Refrigerant Charging Amount (인버터 열펌프의 주파수 및 냉매봉입량 변화에 따른 시스템 성능특성의 실험적 연구)

  • 최득관;김경천;김주상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.66-71
    • /
    • 2001
  • In the air-conditioning industry, the refrigerant charging amount is one of the most important parameters affecting the energy efficiency ratio of heat pumps. An experimental study was performed on the characteristics of an inverter driven air-to-air heat pump system with a variation of compressor frequency and charging amount of refrigerant. The frequency was altered from 40Hz to 70Hz and the charging amount was changed from 1.6kg to 2.8kg in tests. The variation of performance was measured with switching of the expansion valve on each frequency and charging amount. All the tests were performed at the Korean Standard and test conditions of the air conditioners. As results, it was found that there existed the charging amount and the level of the suction gas superheat which provided the highest energy efficiency ratio at all the frequency bands.

  • PDF

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Type Ground Source Heat Pump with a Variation of Compressor Speed and Water Flow Rate (용량 가변 및 유량변화에 따른 지열원 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chan-Yong;Choi, Jong-Min
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWTs of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system was optimized at higher refrigerant charge amount conditions.

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Heat Pump with a Variation of Compressor Speed and Water Flow Rate (압축기 용량 및 유량변화에 따른 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chanyong;Choi, Jong Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz, and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWT of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system optimized at higher refrigerant charge amount conditions.

  • PDF