• Title/Summary/Keyword: Amorphous polymer

Search Result 258, Processing Time 0.022 seconds

Preparation and Characterization of Solid Dispersions of Itraconazole by using Aerosol Solvent Extraction System for Improvement in Drug Solubility and Bioavailability

  • Lee, Si-Beum;Nam, Kyung-Wan;Kim, Min-Soo;Jun, Seoung-Wook;Park, Jeong-Sook;Woo, Jong-Soo;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.866-874
    • /
    • 2005
  • The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazole via solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to $60^{\circ}C$) in temperature. The solid dispersions prepared at $60^{\circ}C$/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at $60^{\circ}C$/10MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as $T_{max},\;C_{max},\;and\;AUC_{0-24h}$ were almost similar to $Sporanox_{\circledR}$ capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.

Gas Separation Properties and Their Applications of High Permeable Amorphous Perfluoropolymer Membranes (고투과성 무정형 불소고분자 불리막의 기체분리 특성 및 응용)

  • Freeman, Benny D.;Park, Ho-Bum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 2007
  • Membrane-based separation processes are receiving increasing attention in the scientific community and industry since they provide a desirable alternative to processes that are not easy to achieve by conventional separation technologies. In particular, gas separation using polymeric membranes have annually grown so fast owing to advantages such as easy installation, no moving parts, small footprint and low energy process. The key element is definitely a polymer membrane exhibiting high permeability and high selectivity to compete with other gas separation technologies. Current polymer membranes used for commercial gas separation are a family of hydrocarbon polymers for hydrogen separation, air separation and carbon dioxide separation from natural gas sweetening. Relatively, gas or vapor separation properties of fluoropolymers are not known so much as compared with those of hydrocarbon polymers. Accordingly, in this study, membranes prepared from amorphous perfluoropolymers are of particular interest because of the unique properties of these polymers. The advantages offered by these amorphous perfluoropolymers for use in gas and vapor separation will be discussed. In addition, membrane properties and separation performance will be compared with other membranes available on the market.

Improved Dissolution and Characterization of Solid Dispersed Atorvastatin Calcium (아토르바스타틴 칼슘 고체분산체의 특성화 및 용출율 개선)

  • Lee, Jun-Hee;Ku, Jeong;Park, Jung-Soo;Park, Jong-Hak;Ahn, Sik-Il;Mo, Jong-Hyun;Kim, Yun-Tae;Rhee, John-M.;Lee, Hai-Bang;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • To overcome the solubility of poorly water-soluble drug, the formation of solid dispersion using a spray-dryer with polymeric material, that can potentially enhance the dissolution rate extend of drug absorption was considered in this study. $Eudragit^{(R)}$ E100 as carrier for solid dispersion is acrylate copolymer that soluble in acidic buffer solutions (below pH 5.0). It was used to increase dissolution of atorvastatin calcium as a water-insoluble drug in acidic environments. In this study, a spray-dryer was used to prepare solid dispersion of atorvastatin calcium and $Eudragit^{(R)}$ E100 for purpose of improving the solubility of drug. Atorvastatin calcium and $Eudragit^{(R)}$ E100 were dissolved in ethanol and spray-dryed. DSC and XRD were used to analyze the crystallinity of the sample. It was found that atorvastatin calcium is amorphous in the $Eudragit^{(R)}$ E100 solid dispersion. FT-IR was used to analyze the salt formation by interaction between atorvastatin calcium and $Eudragit^{(R)}$ E100. Comparative dissolution study exhibited better dissolution characteristics than the commercial drug ($Lipitor^{(R)}$) as control. The dissolution rate of atorvastatin calcium was markedly increased in solid dispersion system in simulated gastric juice (pH 1.2). This study proposed that this solid dispersion system improved the bioavailability of poorly water-soluble atorvastatin calcium.

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Solid State Interfacial Phenomena of High Performance Two Phase Polymer System(I) -Preparation and Characteristics of Liquid Crystalline Polyester and Poly(ε-caprolactam) Alloy- (고기능 고분자 복합재의 고상계면 현상에 대한 연구(I) -액정 Polyester와 Poly(ε-caprolactam) Alloy의 제조와 그 특성)

  • Kang, Doo Whan;Kang, Ho Jong;Jung, Hyo Sung;Lee, Yong Moo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • LCP/PA alloy was prepared by blending poly(${\varepsilon}-caprolactam$) (PA) with liquid crystal polyester, Vectra (LCP) having high elasticity and strength. The alloy prepared amorphous PA with more than 10 parts of thermotropic LCP had poor compatibility. To increase the compatibility of the alloy, compatibilizing agent, poly(glycinylmaleimide-co-methylmetacrylate)[poly(GMI-co-MMA)] copolymer was prepared by copolymerizing N-glycinylmaleimide(GMI) with methylmetacrylate(MMA). And then, it was blended with LCP and PA to produce LCP/PA alloy having an excellent compatibility. The compatibility characteristics of the alloy prepared from LCP and PA using the poly(GMI-co-MMA) was determined by measuring the thermal characteristics of glass transition temperature of nematic LCP, and rheological properties, and also high rate impact and flexual characteristics of the alloy were determined.

  • PDF

Effects of Low Temperature Annealing at Various Atmospheres and Substrate Surface Morphology on the Characteristics of the Amorphous $Ta_2O_5$ Thin Film Capacitors (여러 분위기에서의 저온 열처리와 폴리머 기판의 표면 morphology가 비정질 $Ta_2O_5$ 박막 커패시터의 특성에 미치는 영향)

  • Jo, Seong-Dong;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.509-514
    • /
    • 1999
  • Interest in the integrated capacitors, which make it possible to reduce the size of and to obtain improved electrical performance of an electronic system, is expanding. In this study, $Ta_2$O\ulcorner thin film capacitors for MCM integrated capacitors were fabricated on a Upilex-S polymer film by DC magnetron reactive sputtering and the effects of low temperature annealing at various atmospheres and substrate surface morphology on the capacitor characteristics were discussed. The low temperature($150^{\circ}C$) annealing produced improved capacitor yield irrespective of the annealing at mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably due to the change of the $Ta_2$O\ulcorner film surface by oxygen, which was explained by conduction mechanism study. Leakage current and breakdown field strength of the capacitors fabricated on the Upilex-S film were 7.27$\times$10\ulcornerA/$\textrm{cm}^2$ and 1.0 MV/cm respectively. These capacitor characteristics were inferior to those of the capacitors fabricated on the Si substrate but enough to be used for decoupling capacitors in multilayer package. Roughness Analysis of each layer by AFM demonstrated that the properties of the capacitors fabricated on the polymer film were affected by the surface morphology of the substrate. This substrate effect could be classified into two factors. One is the surface morphology of the polymer film and the other is the surface morphology of the metal bottom electrode determined by the deposition process. Therefore, the control of the two factors is important to obtain improved electrical of capacitors deposited on a polymer film.

  • PDF

Effect of Co-monomer on the Physical Properties of Poly(ethylene naphthalate) Copolymer (단량체의 종류에 따른 폴리(에틸렌 나프탈레이트) 공종합체의 물성 연구)

  • Kim, Jae-Hyun;Heo, Hye-Young;Jung, Tae-Houng;Han, Joon-Hee;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2011
  • The physical properties of poly (ethylene 2,6-naphthalate) (PEN) copolymers were studied. PEN copolymers were synthesized successfully from the mixtures of ethylene glycol(EG), 1,3-propanediol (PD) and l,4-butanediol (BD) with 2,6-dimethyl naphthalene dicarboxylate. The results indicated that PEN copolymers showed an amorphous state when the content of BD(PD) in applied EG/BD(EG/PD) mixtures was less than 40% during the polycondensation. As a result, the lowering of thermal properties, orientation, and mechanical properties was found, however, the dimensional stability was improved. This is a promising result to apply the synthesized PEN copolymers as flexibles substrates.

Dimensional Stability of Poly(ethylene/propylene naphthalate) as a Flexible Substrate Application (유연 기판 소재로 응용을 위한 폴리(에틸렌/프로필렌 나프탈레이트)의 치수안정성 연구)

  • Kim, Jae-Hyun;Heo, Hye-Young;Jung, Tae-Houng;Han, Joon-Hee;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.371-376
    • /
    • 2009
  • The 1,3-propane diol has been introduced as a co-monomer with ethylene glycol to polymerize the poly(ethylene/propylene naphthalate) in order to improve the dimensional stability of poly(ethylene naphthalate) for a possible flexible substrate material. Based on $^1H$-NMR results, it was found that poly (ethylene/propylene naphthalate) has been synthesised successfully. Introducing 1,3-propane diol resulted in the amorphous state in polyester as well as lowering of glass transition and thermal degradation temperature. Coexisting relatively longer propylene segment compared with ethylene in synthesized polyester caused less orientation behavior and reducing thermal expansion coefficient. This is a promising result for poly (ethylene/propylene naphthalate) to apply a flexible substrate.

pH Solubility Properties and Improved Dissolution of Pranlukast as an Poorly Water-soluble Model Drug Prepared by Spray-drying with Plasdone S-630 (플라스돈 S-630과 함께 분무건조된 모델 난용성 약물로서 프란루카스트의 pH 용해도 특성 및 용출률 개선)

  • Cho, Won-Hyung;Lee, Young-Hyun;Song, Byung-Joo;Yoo, Seok-Cheol;Lim, Dong-Kyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 2011
  • Solid dispersion is mainly used for improved dissolution of poorly water-soluble drugs. Solid dispersion of pranlukast was prepared by spray-drying with plasdone S-630. When pH of water was high, pranlukast was highly soluble in the solubility experiment of solid dispersions with varying pH. The particle size of pranlukast particles in solid dispersions was measured to be in nanometers scale based on particle size analysis. Zeta-potential analysis confirmed the negative charge of solid dispersion. SEM was used to observe the surface of solid dispersion, which confirmed spherical morphology, DSC and XRD confirmed the amorphous nature of solid dispersions. The in vitro test was carried out to find improved dissolution rate of pranlukast solid dispersion in simulated juice gastric and a controlled experiment was carried out to compare pranlukast solid dispersions with a conventional drug (Onon$^{(R)}$), These results showed the dissolution properties of pranlukast solid dispersions prepared by spray drying proper for the oral pharmaceutical formulation.

Structural Changes of Biodegradable Poly(tetramethylene succinate) on Hydrolysis

  • Shin, Jick-Soo;Yoo, Eui-Sang;Im, Seung-Soon;Song, Hyun-Hoon
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.210-219
    • /
    • 2001
  • Quenched and slow cooled as well as isothermally crystallized poly(tetramethylene succinate)(PTMS) films at two different temperatures were prepared. In the process of hydrolysis of the four specimens, structural changes such as the crystallinity, crystal size distribution, lattice parameter, lamellar thickness, long period and surface morphology were investigated by using wide and small angle X-ray scattering (WAXS and SAXS), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The hydrolytic degradation of quenched film was faster than that of slow cooled and isothermally crystallized films. The film crystallized at 100$\^{C}$ exhibited extensive micro voids and thus showed faster degradation than that crystallized at 75$\^{C}$, demonstrating surface morphology is another important factor to govern degradation rate. The crystallinity of the specimen increased by 5-10% and long period decreased after hydrolysis for 20 days. At the initial stage of degradation, the lamellar thickness of quenched film rather increased, while that of slow cooled and isothermally crystallized films decreased. The hydrolytic degradation preferentially occurred in the amorphous region. The hydrolytic degradation in crystal lamellae are mainly at the crystal surfaces.

  • PDF