• Title/Summary/Keyword: Amorphous molecule

Search Result 16, Processing Time 0.026 seconds

Invertible Nanofibers with Tunable Stiffness from Self-Assembly of an Amphiphilic Wedge-Coil Molecule

  • Kim, Jung-Keun;Lee, Eun-Ji;Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.249-249
    • /
    • 2006
  • We have prepared an amphiphilic wedge-coil molecule consisting of a hydrophobic wedge-like segment and a hydrophilic poly(ethylene oxide) (PEO) segment. The wedge-coil block molecule self-assembles into cylindrical nanofibers in both polar as well as nonpolar solvents. Remarkably, the resulting nanofibers, as solvent polarity change from water to n-hexane, change from highly flexible coil-like to stiff rod-like characteristics. This dynamic switching in the stiffness of the nanofibers in response to solvent polarity is attributed to the structural inversion of cylindrical core from bulky dendritic segments with amorphous nature to crystallizable linear PEO segments.

  • PDF

Synthesis and Characterization of Bifunctional Organic-Glasses Based on Diphenylhydrazone and Barbituric Acid Derivative for Photorefractive Application

  • Lee, Sang-Ho;Choi, Chil-Sung;Kim, Nak-Joong;Choi, Dong-Hoon;Park, Ki-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1793-1798
    • /
    • 2003
  • A series of amorphous molecules that possess both photoconductive and electro-optic properties was synthesized in order to investigate photorefractive properties of bifunctional organic-glasses. Diethylaminobenzaldehyde-diphenylhydrazone was covalently attached to 5-(4-diethylamino-benzylidene)-1,3-dimethylpyrimidine-2,4,6-trione through a flexible alkyl chain (3, 4, 5, 6 and 10 carbons) containing two ether linkages. The longer linkage not only lowered the glass transition temperature ($T_g$) of the molecules, but also allowed faster orientation of the chromophore. To examine the photorefractive properties, a 50 ${\mu}$m-thick film was prepared from the mixture of a bifunctional molecule, butyl benzyl phthalate, and $C_{60}$. The photoconductivity of this composite was as high as $8.01\;{\times}\;10^{-12}$ S/cm at 60 V/ ${\mu}$m, and the maximum diffraction efficiency ( ${\eta}_{max}$) of 50 ${\mu}$m-thick film was about 5% at 80 V/ ${\mu}$m.

A Study on Capacitance Enhancement by Hemispherical Grain Silicon and Process Condition Properties (Hemispherical Grain Silicon에 의한 정전용량 확보 및 공정조건 특성에 관한 연구)

  • 정양희;정재영;이승희;강성준;이보희;유일현;최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.809-815
    • /
    • 2000
  • The box capacitor structure with HSG-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a $0.4820\mum^2$ for 128Mbit DRAM. An HSG-Si formation technology with seeding method, which employs Si2H6 molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.The box capacitor structure with HSG-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a $0.4820\mum^2$ for 128Mbit DRAM. An HSG-Si formation technology with seeding method, which employs Si2H6 molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.

  • PDF

Hemispherical Grained Silicon formation Condition on In-Situ Phosphorous Doped Amorphous-Si Using The Seeding Method (Seeding Method를 이용한 인이 도우핑된 Amorphous-Si에서의 HSG형성 조건)

  • 정양희;강성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1128-1135
    • /
    • 2001
  • In this paper, a new HSG-Si formation technology, "seeding method', which employs Si$_2$H$_{6}$-molecule irradiation and annealing, was applied for realizing 64Mbit DRAMs. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous-doped amorphous-Si electrode. The new HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors. In this technique, optimum process conditions of the phosphorous concentration, storage polysilicon deposition temperature and thickness of hemispherical grain silicon are in the range of 3.0-4.0E19atoms/㎤, 53$0^{\circ}C$ and 400$\AA$, respectively. In the 64M bit DRAM capacitor using optimum process conditions, limit thickness of dielectric nitride is about 65$\AA$.

  • PDF

Effect of Crystal Form on Bioavailability (결정형이 생체이용률에 미치는 영향)

  • Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.443-452
    • /
    • 2004
  • Habit is the description of the outer appearance of a crystal. If the environment of a growing crystal affects its external shape without changing its internal structure, a different habit results. Crystal habit and the internal structure of a drug can affect bulk and physicochemical properties, which range from flowability to chemical stability. A polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state. Chemical stability and solubility changes due to polymorphism can have an impact on a drug's bioavailability and its development program. During crystallization from a solution, crystals separating may consist of a pure component or be a molecular compound. Solvates are molecular complexes that have incorporated the crystallizing solvent molecule in their lattice. When the solvent incorporated in the solvate is water, it is called a hydrate. To distinguish solvates from polymorphs, which are not molecular compounds, the term pseudopolymorph is used. Identification of possible hydrate compounds is important since their aqueous solubilities can be significantly less than their anhydrous forms. Conversion of an anhydrous compound to a hydrate within the dosage form may reduce the dissolution rate and extent of drug absorption. An amorphous solid may be treated as a supercooled liquid in which the arrangement of molecules is random. Amorphous solids lack the three-dimensional long-range order found in crystalline solids. Since amorphous forms are usually of higher thermodynamic energy than corresponding crystalline forms, solubilities as well as dissolution rates are generally greater. A study on crystal form includes characterization of (l)crystal habit, (2)polymorphism, (3)pseudopolymorphism, (4)amorphous solid.

Miscibility and Mechanical Properties of Polycaprolactone-polyamide Block Copolymer/Poly(vinyl chloride) Blend (Polycaprolactone-폴리아미드 블록공중합체/Poly(vinyl chloride) 블렌드의 상용성과 기계적 성질)

  • 안소봉;이하용;정한모
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.128-132
    • /
    • 2000
  • The miscibility between poly(vinyl chloride) (PVC) and polycaprolactone (PCL)-polyamide block copolymer whose content of PCL block is 62.7 wt%, was studied by differential scanning calorimetry. The PCL segment in the block copolymer and PVC has the miscibility showing single glass transition temperature (T$_{g}$). The miscible PVC molecule inhibited the crystallization of PCL segment, making an amorphous homogeneous phase of PCL and PVC segments at high PVC content. The blends had rubber elasticity at the temperature range between the T$_{g}$ of amorphous homogeneous phase of PCL and PVC segments and the melting temperature of polyamide segment, when both phases coexist.ist.

  • PDF

A Study on Capacitance Enhancement by Hemispherical Grain Silicion and Phosphorous Concentration Properties (HSC-Si형성에 따른 캐패시턴스의 향상 및 인농도 특성에 관한 연구)

  • 정양희;정재영;이승희;강성준
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.475-479
    • /
    • 2000
  • The box capacitor structure with H5G-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a 0.482f${\mu}{\textrm}{m}$$^2$ for 128Mbit DRAM. An H5G-Si formation technology with seeding method, which employs Si$_2$H$_{6}$ molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled H5G-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.s.

  • PDF

The Preparation and Thermal Decomposition of the Basic Zirconium Sulfate (Basic Zirconium Sulfate의 제조와 그 열분해 거동)

  • 석상일;정하균;주명희;박도순
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.707-712
    • /
    • 1990
  • The basic zirconium sulfate was prepared from ZrOCl2.8H2O and H2SO4 in the 9$0^{\circ}C$ aqueous solution. The pH and amount of unreacted zirconium in the solution that reacton had completed was 0.2 and 10%. As the pH was increased to 1.4 by NH4OH theresulting precipitates were the mixtures of the basic zirconium sulfate and the zirconium hydroxide although the precipitates were recovered completely. The thermal decomposition behavior of this sample has been examined by thermal analysis(TG-DTA), X-ray diffraction study, infrared spectroscopy and sulfur analysis. As a result, it was found that the precipitates have perfectly been decomposed at 85$0^{\circ}C$ accompanying to the release of a molecule of water below 25$0^{\circ}C$ and 85% sulfate at about $600^{\circ}C$. The thermally decomlposed products were initially amorphous phase, which were become metastable tetragonal phase with increment of temperature and finally transformed to the stable monoclinic phase at 100$0^{\circ}C$.

  • PDF

A TEM Investigation on the Crystal Structure of $C_{60}$ Thin Crystals ($C_{60}$ 얇은 결정의 결정구조에 관한 투과형전자현미경 연구)

  • Song, Se-Ahn;Kim, Sung-Hoon;Suh, Young-Doug;Kim, Seong-Keun
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.67-75
    • /
    • 1991
  • [ $C_{60}$ ] molecule, the Buckminsterfullerene, has generated great interest because of its unique molecular structure and of superconductivity exhibited in its alkali-doped solids. We have investigated the molecular stacking and crystal structure of $C_{60}$ thin crystals formed on amorphous carbon film. The $C_{60}$ powder which was chromatographically purified was dissolved in benzene. The thin crystals of $C_{60}$ were observed with a 300 keV transmission electron microscope. Electron diffraction analysis and direct imaging of its molecular stacking were carried out. It was found from this work that the molecules of $10.0{\AA}$ diameter are arrayed hexagonally on substrate surface and $8.7{\AA}$ lattice planes are quite often found in several types of ED patterns, which can never be explained with a fcc model. Therefore the structure of $C_{60}$ thin crystals is hcp, although we cannot fully exclude the possibility of co-existence of hcp and fcc.

  • PDF

Synthesis and characterization of doxorubicin hydrochloride drug molecule-intercalated DNA nanostructures

  • Gnapareddy, Bramaramba;Deore, Pragati Madhukar;Dugasani, Sreekantha Reddy;Kim, Seungjae;Park, Sung Ha
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1294-1299
    • /
    • 2018
  • In this paper, we demonstrate the feasibility of constructing DNA nanostructures (i.e. DNA rings and double-crossover (DX) DNA lattices) with appropriate doxorubicin hydrochloride (DOX) concentration and reveal significant characteristics for specific applications, especially in the fields of biophysics, biochemistry and medicine. DOX-intercalated DNA rings and DX DNA lattices are fabricated on a given substrate using the substrateassisted growth method. For both DNA rings and DX DNA lattices, phase transitions from crystalline to amorphous, observed using atomic force microscopy (AFM) occurred above a certain concentration of DOX (at a critical concentration of DOX, $30{\mu}M$ of $[DOX]_C$) at a fixed DNA concentration. Additionally, the coverage percentage of DNA nanostructures on a given substrate is discussed in order to understand the crystal growth mechanism during the course of annealing. Lastly, we address the significance of optical absorption and photoluminescence characteristics for determining the appropriate DOX binding to DNA molecules and the energy transfer between DOX and DNA, respectively. Both measurements provide evidence of DOX doping and $[DOX]_C$ in DNA nanostructures.