• Title/Summary/Keyword: Amoeba cDNA

Search Result 8, Processing Time 0.026 seconds

Upregulated expression of the cDNA fragment possibly related to the virulence of Acanthamoeba culbertsoni

  • Im, Kyung-Il;Park, Kwang-Min;Yong, Tai-Soon;Hong, Yong-Pyo;Kim, Tae-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.4
    • /
    • pp.257-263
    • /
    • 1999
  • Identification of the genes responsible for the recovery of virulence in brain-passaged Acanthamoeba culbertsoni was attempted via mRNA differential display polymerase chain reaction (mRNA DD-PCR) analysis. In order to identify the regulatory changes in transcription of the virulence related genes by the brain passages, mRNA DD-PCR was performed which enabled the display of differentially transcribed mRNAs after the brain passages. Through mRNA DD-PCR analysis. 96 brain-passaged amoeba specific amplicons were observed and were screened to identify the amplicons that failed to amplify in the non-brain-passaged amoeba mRNAs. Out of the 96 brain-passaged amoeba specific amplicons, 12 turned out to be amplified only from the brain-passaged amoeba mRNAs by DNA slot blot hybridization. The clone, A289C, amplified with an arbitrary primer of UBC #289 and the oligo dT$_{11}$-C primer, revealed the highest homology (49.8%) to the amino acid sequences of UPD-galactose lipid transferase of Erwinia amylovora, which is known to act as an important virulence factor. The deduced amino acid sequences of an insert DNA in clone A289C were also revealed to be similar to cpsD, which is the essential gene for the expression of type III capsule in group B streptococcus. Upregulated expression of clone A289C was verified by RNA slot blot hybridization. Similar hydrophobicity values were also observed between A289C (at residues 47-66) and the AmsG gene of E. amylovora (at residues 286-305: transmembrane domains). This result suggested that the insert of clone A289C might play the same function as galactosyl transferase controlled by the AmsG gene in E. amylovora.a.

  • PDF

Pepstatin- Insensitive Carboxyl Proteinase: A Biochemical Marker for Late Lysosomes in Amoeba proteus

  • Hae Kyung Kwon;HyeonJung Kim;Tae In Ahn
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.221-228
    • /
    • 1999
  • In order to find a biochemical marker for late Iysosomes, we characterized two cDNAs which were cloned by using a monoclonal antibody (mAb) against Iysosomes in Amoeba proteus as a probe. The two cDNAs, a 1.3-kb cDNA in pBSK-Iys45 and a 1.6-kb cDNA in pBSK-Iys60, were found to encode proteins homologous to pepstatin-insensitive carboxyl proteinases (PICPs). E. coli transformed with pBSK-Iys45 produced two immunopositive polypeptides (45 and 43 kDa) and the cDNA in 1274 bases encoded a 44,733-Da protein (Lys45) of 420 amino acids containing one site for a core oligosaccharide. On the other hand, E. coli transformed with pBSK-Iys60 produced several polypeptides (64, 54, 45, 41, and 37 kDa) reacting with the mAb. The cDNA contained 1629 bases and encoded a 59,231-Da protein (Lys60) of 530 amino acids containing two sites for asparagine-linked core oligosaccharides. These two cDNAs showed identities of 60.3% in nucleotide sequences and 23.6% in amino acid sequences. Lys45 and Lys60 appeared to share XXEFQK as a common antigenic domain. The amino acid sequence of the Lys45 protein showed 17.4% identity and 40.9% similarity to that of PICP from Pseudomonas sp. 101. On the other hand, Lys60 showed a 24.3% identity and 51.9% similarity with human Iysosomal PICP in the amino acid sequence. A putative active center for serine protease, GTS*xxxxxFxG, was found to be conserved among PICP homologues. The two PICPs are the first reported enzymatic markers for late Iysosomes.

  • PDF

Amoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica

  • Lee, Young Ah;Kim, Kyeong Ah;Min, Arim;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.4
    • /
    • pp.355-365
    • /
    • 2014
  • The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

Isolation and characterization of a cDNA encoding a mammalian cathepsin L-like cysteine proteinase from Acanthmoeba healui

  • Hong, Yeon-Chul;Hwang, Mi-Yul;Yun, Ho-Cheol;Yu, Hak-Sun;Kong, Hyun-Hee;Yong, Tai-Soon;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • We have cloned a cDNA encoding a cysteine proteinase of the Acanthamoeba healui OC-3A strain isolated from the brain of a granulomatous amoebic encephalitis patient. A DNA probe for an A. healui cDNA library screening was amplified by PCR using degenerate oligonucleotide primers designed on the basis of conserved amino acids franking the active sites of cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteinases. Cysteine proteinase gene of A. healui (AhCPI) was composed of 330 amino acids with signal sequence, a proposed pro-domain and a predicted active site made up of the catalytic residues, $Cys^{25},{\;}His^{159},{\;}and{\;}Asn^{175}$. Deduced amino acid sequence analysis indicates that AhCPI belong to ERFNIN subfamily of C 1 peptidases. By Northern blot analysis. no direct correlation was observed between AhCPI mRNA expression and virulence of Acanthamoeba, but the gene was expressed at higher level in amoebae isolated from soil than amoeba from clinical samples. These findings raise the possibility that AhCPI protein may play a role in protein metabolism and digestion of phagocytosed bacteria or host tissue debris rather than in invasion of amoebae into host tissue.

Construction of EST Database for Comparative Gene Studies of Acanthamoeba

  • Moon, Eun-Kyung;Kim, Joung-Ok;Xuan, Ying-Hua;Yun, Young-Sun;Kang, Se-Won;Lee, Yong-Seok;Ahn, Tae-In;Hong, Yeon-Chul;Chung, Dong-Il;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.103-107
    • /
    • 2009
  • The genus Acanthamoeba can cause severe infections such as granulomatous amebic encephalitis and amebic keratitis in humans. However, little genomic information of Acanthamoeba has been reported. Here, we constructed Acanthamoeba expressed sequence tags (EST) database (Acanthamoeba EST DB) derived from our 4 kinds of Acanthamoeba cDNA library. The Acanthamoeba EST DB contains 3,897 EST generated from amebae under various conditions of long term in vitro culture, mouse brain passage, or encystation, and downloaded data of Acanthamoeba from National Center for Biotechnology Information (NCBI) and Taxonomically Broad EST Database (TBestDB). The almost reported eDNA/genomic sequences of Acanthamoeba provide stand alone BLAST system with nucleotide (BLAST NT) and amino acid (BLAST AA) sequence database. In BLAST results, each gene links for the significant information including sequence data, gene orthology annotations, relevant references, and a BlastX result. This is the first attempt for construction of Acanthamoeba database with genes expressed in diverse conditions. These data were integrated into a database (http://www. amoeba.or.kr).

Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba

  • Alafag Joanna It-itan;Moon Eun-Kyung;Hong Yeon-Chul;Chung Dong-Il;Kong Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.331-341
    • /
    • 2006
  • Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to $10{\mu}M$ of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.