• Title/Summary/Keyword: Ammunition Storage

Search Result 35, Processing Time 0.025 seconds

Study on Design Method of Tunnel-type Ammunition Storage Chamber (터널형 탄약고의 격실 설계 방법에 대한 연구)

  • Park, Sangwoo;Baek, Jangwoon;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • Recently, the demand for underground-type ammunition storage facilities has increased. Comparing with a ground-type ammunition storage facility, the underground-type ammunition storage facility can decrease the standard of safety distance because fragment and blast wave can be locked in the rock formation. However, the absence of a design method on the underground-type ammunition storage chamber became a major setback for the construction promotion. In this study, the process for designing an overall configuration of the underground-type ammunition storage facility was provided. First, the determination method for configuration and number of the chamber was developed by performing the ammunition storage simulation. Then, a tunnel (i.e., transfer channel for vehicles) and designed chambers can be arranged on the basis of safety distance standard. The safety distance standard also should be considered for determining the location and the size of entrances because of the blast wave and fragment effect at the entrances when an explosion is generated inside a chamber. In addition, considerations on the design for the waterproof and the drainage of subsurface water were analyzed through construction cases. Finally, an example of designing underground-type ammunition storage chambers was provided in order to verify the developed design process.

Analysis of Ammunition Inspection Record Data and Development of Ammunition Condition Code Classification Model (탄약검사기록 데이터 분석 및 탄약상태기호 분류 모델 개발)

  • Young-Jin Jung;Ji-Soo Hong;Sol-Ip Kim;Sung-Woo Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.23-31
    • /
    • 2024
  • In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.

Study for Reducing Safety Distance by Installing Ammunition Storage Facility in Underground (탄약저장시설 지하화에 따른 안전거리 축소방안 연구)

  • Park, Sangwoo;Jun, Jonghoon;Choi, Hangseok;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • With increasing interest in an underground-type ammunition storage facility, several design results have been provided recently. However, since not only experts in the tunnel but also military persons in charge of ammunition have not fully understood the safety distance standard, reliable design results are not being produced. In this study, the effective design method of an underground-type ammunition storage facility was provided by analyzing the current safety distance standard. First, the critical safety distances that dominate the size of construction site for underground-type ammunition storage facilities were evaluated, which are the layout of chambers and the configuration of the entrances. Then, the decreasing effect of inter-chamber distance was studied according to the rock type and the storage density of ammunition. In addition, the method of designing tunnels with parallel lines and two-floors was considered for arranging more chambers while complying with the safety distance standards. In particular, numerical simulations were carried out to determine the satisfaction of the safety distance standards when an underground-type ammunition storage facility is composed of two-floor and the decreasing effect of inter-chamber distance according to the inner explosive pressure reduction. Finally, the method to adjust the size of entrances and the path of pressure were studied for decreasing the safety distance at the entrance.

Logistics Development Plan for Underground Ammunition Depots based on Network (네트워크 기반 지하형 탄약고의 물류 발전방안 연구)

  • Kim, Byungkyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.137-145
    • /
    • 2022
  • The logistics of ammunition stored in the underground ammunition warehouse has more difficulties than the logistics of ammunition stored on the ground due to the nature of the storage space. This study was conducted to solve the logistics of underground ammunition warehouse by improving these problems. And six items such as guard, safety, environment, supply system, equipment, facilities, and life management were selected for the improvement of logistics. And AHP was analyzed by Expert Choice program by conducting a survey to experts. As a result of the analysis, it was confirmed that the importance was high in the order of safety, guard, life management, equipment facilities, supply system, and environment. Based on the selected items and the results of the survey, a plan to build a network-based integrated platform that can improve logistics in an underground ammunition warehouse was presented. This study will be used as a basis for the establishment of an integrated platform when constructing an underground ammunition warehouse in the future. This study can be applied to storage facilities that store other materials in the military, and it is expected to be applied to large commercial storage facilities.

Prediction of Shelf-life for 81mm Mortar High Explosive Ammunition Using Multiple Regression Model (다중 회귀 모델을 활용한 81mm 박격포 고폭탄 저장수명 예측)

  • Young-Jin Jung;Ji-Soo Hong;Kang-Young Lee;Sung-Woo Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study aims to develop a regression model using data from the Ammunition Stockpile Reliability Program (ASRP) to predict the shelf life of 81mm mortar high-explosive shells. Ammunition is a single-use item that is discarded after use, and its quality is managed through sampling inspections. In particular, shelf life is closely related to the performance of the propellant. This research seeks to predict the shelf life of ammunition using a regression model. The experiment was conducted using 107 ASRP data points. The dependent variable was 'Storage Period', while the independent variables were 'Mean Ammunition Velocity,' 'Standard Deviation of Mean Ammunition Velocity,' and 'Stabilizer'. The explanatory power of the regression model was an R-squared value of 0.662. The results indicated that it takes approximately 55 years for the storage grade to change from A to C and about 62 years to change from C to D. The proposed model enhances the reliability of ammunition management, prevents unnecessary disposal, and contributes to the efficient use of defense resources. However, the model's explanatory power is somewhat limited due to the small dataset. Future research is expected to improve the model with additional data collection. Expanding the research to other types of ammunition may further aid in improving the military's ammunition management system.

A study on the factors affecting shelf-life for 60, 81mm mortar ammunition (60, 81mm 박격포탄의 저장수명 요인 연구)

  • Jang, SooHee;Chun, Heuiju;Cho, Inho;Yoon, KeunSig;Kang, MinJung;Park, DongSoo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.611-620
    • /
    • 2018
  • Limitations on human and material resources make it is difficult to conduct Ammunition Stockpile Reliability Program (ASRP) tasks for the entire ammunition. Stockpile ammunition life prediction studies can contribute to efficient ASRP tasks. This study assess the shelf-life of ammunition, using survival analysis based on ASRP results for 60mm and 81mm mortar ammunition from 2003 to 2016. Traditional assessments often use solely storage duration as the only main independent variable; however, this assessment used other factors such as ammunition magazine shape and weather factors with the stockpile shelf-life as independent variables to conduct a Cox's proportional hazard model analysis. This was then followed by an assessment of ammunition magazine type, maximum temperature and rainfall factors influence on the shelf-life of 60mm and 81mm mortar ammunition. As a result, the type of ammunition magazine, maximum temperature and the rainfall influence the shelf-life of 60mm and 81mm mortar ammunition.

A Study on Ammunition Resupply Allocation Model (전시탄약 재보급 할당에 관한 연구)

  • Lee Young-Shin
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.133-140
    • /
    • 2004
  • In this paper, with the limited range of ammunition supply point(ASP) at ammunition battalion in specific corps and light automobile battalion(LAB) directly supports its vehicle for ammunition supply, we propose optimal model to minimize transportation time and logistics cost using integer programming(IP) for efficient ammunition resupply allocation during a given operation period of front combat unit. And then, we consider ammunition treatment and supply capacity of ammunition supply point(ASP), constraint elements of transportation ability considering time and cost, ammunition storage capacity of combat unit, combat situation and unit mission to propose this model. Finally, through numerical example, we examine the applicable feasibility of proposed model.

A Case Study on the Reliability Assessment of Stockpile Ammunition (저장탄약의 품목별 신뢰도평가 사례 연구)

  • Yoon, Keun-Sig;Lee, Jong-Chan
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.259-269
    • /
    • 2012
  • Purpose: The purpose of this study was to find out that the statistical method of stockpile reliability of ammunition by items can be applied to the reliability assessment of stockpile ammunition. Methods: We reviewed the statistical method of stockpile reliability of ammunition by items and verified the possibility of its application by case study. Results: We found that the statistical method of stockpile reliability of ammunition by items is very useful and effective to present the reliability of ammunition based on each item and to predict the change of the reliability in the future. The reliability of proximity fuse was about 94.5% and was influenced by manufacture's year and the difference between lot and lot more than storage period. Conclusion: The statistical method of stockpile reliability of ammunition by items can be applied to the reliability assessment of various stockpile ammunitions such as ammunition for mortar and canon.

A Study of Factors Influencing the Range of 81mm HE shells One-Shot systems based on CART Regression analysis (CART 회귀분석 기반 일회성 시스템 81mm 고폭탄 사거리에 영향을 미치는 요인 분석)

  • Myung Sung Kim;Jun Hyeok Choi;Young Min Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.107-113
    • /
    • 2023
  • For one-shot systems such as 81mm high-explosive ammunition, research on performance prediction is insignificant due to research manpower infrastructure and lack of interest and difficulties in securing field data, which can only be done by special task workers. In order to evaluate the actual range of ammunition, the storage ammunition reliability evaluation checks the range by firing actual ammunition through a functional test. Test evaluation is a method of extracting a sample from the population, launching it, and recording the results accordingly. As a result of these tests, the range, which is an indicator of ammunition performance, can be measured differently according to meteorological factors such as temperature, atmospheric pressure, and humidity according to the location of the test site. In this study, various environmental factors generated at the test site and storage period analyze the correlation with the range, which is the performance of ammunition, and analyze the priority of importance for each factor and the numerical standards that environmental factors affect range. Through this, a new approach to one-shot system performance prediction was presented.

A Study on the Development of ASRP for Improvement of the Stockpile Ammunition Reliability (저장탄약 신뢰성 향상을 위한 ASRP 발전방안 연구)

  • Choi, Seok-Cheol;Bae, Yun-Ho;Kim, Dong-Eok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.32-40
    • /
    • 2005
  • The ASRP(Ammunition Stockpile Reliability Program) is a overall evaluation system of ammunitions to improve the combat strength, having a short history. The storage lifetime of ammunitions, more than 20 years since being produced, differs according to storage circumstance and period. And it shows the different reliability for munitions. Because most ammunitions in military have been stored for a long time, these ammunitions need to be evaluated to maintain Serviceability, Reliability, Safety and Performance for the use of military. In this paper, it suggested the need to develop the techniques for ourselves, to make more laboratories for surveillance and testing and to extend research funds & concerns.