• Title/Summary/Keyword: Ammonium-N

Search Result 868, Processing Time 0.024 seconds

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF

Factors Affecting the Formation of Iodo-Trihalomethanes during Chlorination in Drinking Water Treatment (정수처리에서 염소 처리시 요오드계 트리할로메탄류 생성에 영향을 미치는 인자들)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Kyung-A;Song, Mi-Jeong;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.542-548
    • /
    • 2014
  • Effects of bromide ($Br^-$) and iodide ($I^-$) concentrations, chlorine ($Cl_2$) doses, pH, temperature, ammonia nitrogen concentrations, reaction times and water characteristics on formation of iodinated trihalomethanes (I-THMs) during oxidation of iodide containing water with chlorine were investigated in this study. Results showed that the yields of I-THMs increased with the high bromide and iodide level during chlorination. The elevated pH significantly increased the yields of I-THMs during chlorination. The formation of I-THMs was higher at $20^{\circ}C$ than $4^{\circ}C$, $10^{\circ}C$ and $30^{\circ}C$. In chloramination study, addition of ammonium chloride ($NH_4Cl$) markedly increased the formation of I-THMs. Among the water samples collected from seven water sources including wastewater treatment plant (WWTP) effluent water (EfOM water), prepared humic containing water (HA water) and algal organic matter (AOM) containing water (AOM water), EfOM water generated the highest yields of I-THMs ($12.31{\mu}g/mg$ DOC), followed by HA water ($4.96{\mu}g/mg$ DOC), while AOM water produced the lowest yields of I-THMs ($0.99{\mu}g/mg$ DOC). $SUVA_{254}$ values of EfOM water, HA water and AOM water were $1.38L/mg{\cdot}m$, $4.96L/mg{\cdot}m$ and $0.97L/mg{\cdot}m$, respectively. The I-THMs yields had a low correlation with $SUVA_{254}$ values ($r^2$ = 0.002).

Bioconcentration Factor(BCF) of Perchlorate from Agricultural Products and Soils (농산물과 토양에 대한 퍼클로레이트 함량 평가 및 생물농축계수 산출)

  • Kim, Ji-Young;Kim, Min-Ji;Lee, Jeong-Mi;Kim, Doo-Ho;Park, Ki-Moon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2013
  • BACKGROUND: Perchlorate(${ClO_4}^-$) is an anion that is extremely water-soluble and environmentally stable. It mostly exists in the form of sodium perchlorate, ammonium perchlorate and potassium perchlorate which are used in rocket fuels, propellants, ignitable sources, air bag inflation systems and explosives. Perchlorate can be taken into the thyroid glands and interfere with iodide uptake. The determination of perchlorate in agricultural products is important due to its potential health impact on humans. The objective of this study was to determine the perchlorate concentrations in the samples of various agricultural products and soils. METHODS AND RESULTS: In this study, samples of cereal(Rice, Barley, Corn, Bean), vegetable(Spinach, Lettuce, Sesame, Chives, Chili, Pumpkin, Tomato), fruit(Apple, Pear, Tangerine, Grape) were analyzed for perchlorate contents. Perchlorate concentrations were analyzed by liquid chromatography-tandem mass spectrometry. The results showed that agricultural products respectively contained perchlorate concentrations in the range of : cereals N.D.~$7.46{\mu}g/kg$, vegetables $0.52{\sim}23.06{\mu}g/kg$, fruits $0.19{\sim}2.66{\mu}g/kg$. Bioconcentration factor was in the order of : vegetables > cereals > fruits. Bioconcentration factor was highest follwed by Sesame 37.88, Corn 21.51, Spinach 10.57, Tangerine 4.39, Chives 2.89 and Lettuce 1.90. The recoveries of perchlorate from spiked agricultural products and soils ranged from 87.72~111.26% and 102.09~111.23%. CONCLUSION(S): The health risk assessment results obtained in this study are lower than the RfD(Reference Dose, 0.0007 mg/kg/body weight/day) value as suggested by the Integrated Risk Information System(US IRIS). Our results indicate that, people currently exposed to perchlorate from agricultural products consumption are considered as safe.

Studies on the Factors Enhancing the Effects of Nitrogen Application of Rice Culture in Korea (수도작(水稻作)에서 시용질소효과 증대요인의 해석적(解析的) 연구)

  • Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.131-155
    • /
    • 1983
  • Though it has been widely known the nitrogen effects are influenced by soils, varieties, and mineral nutrients in the rice culture, few analyses in relation to the factors increasing nitrogen effect have been studied in Korea. The effects of potassium and silica on the factors increasing nitrogen effects in paddy soils were investigated in accordance with soil improvement practices and nitrogen application methods for the cultivated varieties. The results obtained are as follows. 1. For 413 paddy fields, the yield from soils without nitrogen application ranged from 200 to 850kg/10a and that from nitrogen application did 350 to 1,051kg/10a. The yield increament by nitrogen application varied 50 to 650kg/10a depending on soils. 2. Soil chemical characteristics for high yield were different between with nitrogen and without nitrogen application. In the without nitrogen application, however, contents of organic matter, phosphorous, potassium and calcium of high yield soils were lower than those of low yield, while the available silica content was higher in the former. 3. The yield increased with nitrogen application up to 22.4kg/10a and thereafter it decreased. These phenomena were supposed to be not be decrease of nitrogen uptake but by lowered silica uptake. 4. Clay soil incorporation, deep plough, and inorganic constituents control such as Ca, Mg, and $Sio_2$ were effective as soil improvement praitices. It was appeared that increases of silica content and Ca/Mg ratio were important to increase nitrogen effects. 5. For the correlation between yield and yield components, it was high between yield and panicle in low nitrogen level and so was it between grain yield and ripening rate in high nitrogen. 6. In the urea and super granule urea application plot, recovery rate of nitrogen by plant and soil was high and yield was remarkable high. 7. Regardless of fertilizer types such as ammonium sulfate and urea, the residual nitrogen was about 4kg/10a in both plots of 5.8 and 11.6kg/10a. N applied. 8. The potassium application to soil enhanced the nitrogen efficiency. It was more effective in low potassium soil. 9. Optimum pH value for gel formation in the 4% sodium silicate solution was approximately 6.6. 10. It was suggested that silica could affect to rice plant growth as the inorganic and organic chemical components.

  • PDF

Purification and Characterization of Oriental Pear(Niitaka, Pyrus pyrifolia Nak.) Protease (동양배(신고(新高)) Protease의 정제(精製) 및 성질(性質)에 관(關)하여)

  • Kim, Seung Yeol;Chung, Hai Jung;Kim, Seung Kyeom;Shin, Cheol Seung
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.225-238
    • /
    • 1989
  • These studies were conducted to investigate the extraction, purification and characterization of oriental pear (Niitaka. Pyrus pyrifolia Nak.) protease, and the results obtained were as follows: 1. Oriental pear protease was effectively extracted by the method of homogenizing pear pulp with 0.7 volume of 0.1M-sodium phosphate buffer, pH 6.5 containing 5mM-cysteine, 40mM-2-mercaptoethanol and 2mM-EDTA at 10,000 rpm for 5 min. 2. The protease was purified by ammonium sulfate fractionation, Sephadex G-100 filtration and DEAE-Sephadex A-50 column chromatography, and the purified enzyme gave a single protein band on polyacrylamide gel electrophoresis. 3. The specific activity of purified enzyme was 29.65 unit/mg protein and the yield was 7.22%. 4. The moecular weight of the protease was estimated to be about 51,000 by SDS-polyacrylamide gel electrophoresis, and the enzyme had Km value of 54.5 mg/ml for casein. 5. The purified enzyme had a maximum activity at pH 6.0 and $50^{\circ}C$, and was stable from pH 5.5-6.5 and at temperatures below $50^{\circ}C$ 6. Casein was a better substrate for this protease compared to hemoglobin. 7. The enzyme activity was markedly inhibited by p-chloromercuribenzoic acid and heavy metal salts such as $HgCl_2$ and $MnSO_4$ also considerably inhibited the enzyme activity.

  • PDF

Rates and Controls of Organic Matter Mineralization and Benthic Nutrient Release in the Coastal Sediment Near Lake Shihwa (시화호 인근 연안 퇴적물의 유기물 분해 특성, 저층 영양염 용출 및 조절요인)

  • SHIN, JAE-HYUK;AN, SUNG-UK;CHOI, JAE-HOON;LEE, HYO-JIN;WOO, SEUNG-BUHM;HYUN, JUNG-HO;KIM, SUNG-HAN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.110-123
    • /
    • 2021
  • We investigated geochemical constituents of pore-water and sediment, rates of organic carbon (Corg) oxidation and sulfate reduction (SR), and benthic nutrient flux (BNF) to elucidate characteristic of Corg oxidation and its control in the coastal area near Lake Shihwa. The study sites were selected in the vicinity of Soraepogu (E0), Songdo tidalflat (E1) and Oido dock (E3) and in front of floodgate Shihwa tidal plant (E5). The Corg contents in the sediments and concentrations of ammonium and phosphate in pore water exhibited the highest value at EO, and gradually decreased toward the outer sea (E1, E3, E5). Rates of anaerobic Corg oxidation (260.6 mmol C m-2 d-1) and SR (91.4 mmol S m-2 d-1) at E0 were 4-9 and 6-54 times higher than at the site of outer sea (E1, E3, E5). Rates of SR at E3 and E5 accounted for 11-23% of anaerobic Corg oxidation, whereas it comprised 47-70% of anaerobic Corg oxidation at E0 and E1. Rates of Corg oxidation and SR showed a highly positive correlation with the concentration of dissolved organic carbon (r2 = 0.795 and 0.777, respectively). The BNF at E0, E1, and E3 accounted for 120-510% and 26-178%, respectively, of the N and P required for primary production in the water column. Overall results suggest that the Corg oxidation in the sediment controlled by concentration of dissolved organic carbon in the pore water and the excessive Corg oxidation stimulates the benthic nutrient flux, which may cause a phytoplankton bloom in the water column.

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF