• Title/Summary/Keyword: Ammonium nitrate

Search Result 532, Processing Time 0.028 seconds

ZanF를 이용한 질산성 질소 환원 및 암모늄부산물 동시제거

  • 이승학;이광헌;이성수;박준범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.107-110
    • /
    • 2003
  • Reduction of nitrate by zero valent iron (Fe$^{0}$ ) has been previously studied, but the proper treatment for the by-product of ammonium has not been reported. However, in terms of nitrogen contamination, ammonium may be regarded as another form of nitrogen contaminants since it can be oxidized to nitrate again under aerobic conditions. This study is focused on simultaneous removal of nitrate and its by-product of ammonium, with the ZanF (Zeolite anchored Fe), a product derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH condition with ZanF, iron filing, Fe(II)-sorbed zeolite, and pure zeolite to estimate the nitrate reduction and the ammonium production. At higher pH, removal rate of nitrate was reduced in both ZanF and iron filings. ZnF removed 60 % of nitrate at initial pH of 3.3 with no production of ammonium, while iron filing showed equivalent production of ammonium to the reduced amount of nitrate. In terms of nitrogen contamination, ZanF removed about 60 % and 40 % at initial pH of 3.3 and 6, respectively, while iron filing presented negligible removal against total nitrogen including nitrate and ammonium.

  • PDF

Characteristics of $SnO_2$ Prepared by Preparation Method with Ammonium Nitrate (Ammonium Nitrate를 이용한 침전법으로 제조된 $SnO_2$ 특성분석)

  • Son, Hyang-Ho;Lee, Won-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.440-444
    • /
    • 2010
  • $SnO_2$ powders were prepared from the calcination of stannic acids precipitated from the aqueous solution of $SnCl_4$ with ammonium nitrate as a precipitator at $90^{\circ}C$. For the comparison of properties, the stannic acids were prepared from the homogeneous precipitation method using urea as a precipitator at the same temperature. The stannic acid from ammonium nitrate at a thermal gravity analysis showed the weight loss until $700^{\circ}C$ and the percentage of total weight loss was 16.5%. The crystallization of stannic acid into $SnO_2$ finished in the calcination at $600^{\circ}C$ for 2 h. The crystallite size of $SnO_2$ increased with the increase of calcination temperature and initial concentration of $SnCl_4$ solution. In case of the same calcination condition, $SnO_2$ prepared from homogeneous precipitation using urea had a relatively smaller crystallite size rather than $SnO_2$ prepared from ammonium nitrate.

Effects of Nitrogen and Potassium Sources on the Growth and Quality of Zoysia japonica Steud. (질소 및 가리 급원이 들잔디(Zoysia japonica Steud.)의 생육 및 품질에 미치는 영향)

  • 황규성;이용범;한동욱
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of the experiment was to determine the effect of nitrogen sources (urea, ammonium sulphate, ammonium nitrate) and potassium sources (potassium chloride, potassium sulphate) on the growth and quality of Zoysia japonica Steud. This experiment was conducted at Seoul City University turf field from 1988 to 1989. The results of this experiment were summarized as follows; 1. Urea and Ammonium sulphate resulted in superior clipping yield compared to ammonium nitrate. The growth of rhizome and stolon increased significantly with urea forms, but ammonium sulphate treated plots exhibited the highest the growth rate of root. 2. Ammonium sulphate showed best turf color rating while ammonium nitrate resulted in the poorest. Prolongation of the green period showed longer in ammonium sulphate and urea treated plots than ammoium nitrate. 3. Urea and ammonium sulphate exhibited superior visible quality and shoot density compared to ammonium nitrate. 4. The uptake of mineral nutrient showed the highest concentration with urea plots. Surface soil pH was allowed to become slightly acid with the ammonium sulphate and potassium sulphate treatments, while the application of N and K sources did not cause significant differences in mineral element content in soil.

  • PDF

Synthesis of Spiroannulated Dihydrofuran Compounds Utilizing Cerium(IV) Ammonium Nitrate (Cerium(IV) Ammonium Nitrate를 이용한 Spiroannulated 다이하이드로퓨란 화합물의 합성)

  • Kim, Byung-SO
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.385-390
    • /
    • 2002
  • An efficient synthesis of spiroannulated dihydrofurans is achieved from 1,3-dicarbonyl compounds and exocyclic alkenes in the presence of cerium ammonium nitrate(IV) in moderate yields. In the case of entries 3-9, as a single product was seen. Especially, reaction of 15 with methylenecyclohexane afforded the two regioisomeric cyclo adducts 21 and 22. The structures of these adducts were confirmed by IR and NMR-Spectra.

  • PDF

Effect of Ammonium and Nitrate on Current Generation Using Dual-Cathode Microbial Fuel Cells

  • Jang, Jae-Kyung;Choi, Jung-Eun;Ryou, Young-Sun;Lee, Sung-Hyoun;Lee, Eun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.270-273
    • /
    • 2012
  • These studies were conducted to determine the effects of various concentrations of ammonium and nitrate on current generation using dual-cathode microbial fuel cells (MFCs). Current generation was not affected by ammonium up to $51.8{\pm}0.0$ mg/l, whereas $103.5{\pm}0.0$ mg/l ammonium chloride reduced the current slightly. On the other hand, when $60.0{\pm}0.0$ and $123.3{\pm}0.1$ mg/l nitrate were supplied, the current was decreased from $10.23{\pm}0.07$ mA to $3.20{\pm}0.24$ and $0.20{\pm}0.01$ mA, respectively. Nitrate did not seem to serve as a fuel for current generation in these studies. At this time, COD and nitrate removal were increased except at $123{\pm}0.1$ mg ${NO_3}^-/l$. These results show that proper management of ammonium and nitrate is very important for increasing the current in a microbial fuel cell.

Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots

  • Wu, Yunfei;Yang, Wenzhu;Wei, Jinhuan;Yoon, Hyeryung;An, Gynheung
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.178-185
    • /
    • 2017
  • Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.

Simultaneous Removal of Ammonium and Nitrate by Natural Zeolite and Bacteria (천연 zeolite와 미생물을 이용한 NH4+ 및 NO3-의 동시 제거)

  • Lee, Seon-hee;Lee, Ji-Hye;Kim, Duk gyum;Lee, Chang-Soo;Kang, Kyung Suk;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.971-976
    • /
    • 2008
  • Water pollution by ammonium ion and nitrate is a common and growing problem in the ecosystem. Process of biological removal consists of nitrification and denitrification by bacteria. Ammonium is oxidized generally to nitrate by nitrification and nitrate is reduced to dinitrogen gas in the subsequent denitrification process. Although natural zeolite is well known for its ability to preferentially remove ammonium, it is not sufficiently removing ammonium ion and nitrate by adsorption. In order to overcome this problem, a method of biological removal with zeolite is used for simultaneous removal of ammonium and nitrate. As a result, in case of shaking culture with 1% seed and passing through zeolite column, the process revealed that ammonium ion could be removed completely after 14 hours. The removal of nitrate using columns with naturally adsorbed bacteria onto zeolite reached approximately 100% after 4 hours.

Hazards and Workplace Management of Ammonium nitrate (Ammonium nitrate의 유해성과 작업환경 관리)

  • Kim, Hyeon-Yeong;Hwang, Yang-In;Kuk, Won-Kwen
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • Objectives: The purpose of this study is the work environment management method through risk assessment and investigation of the work place that deals with Ammonium nitrate, based on information in and outside the country. Methods: This study suggests method of work environment management through risk assessment and investigation of the work place that deals with Ammonium nitrate, and finds out cases of Ammonium nitrate causing hazard, danger and health risk, based on literature investigation. Results: Rats exposed repeatedly to $LD_{50}$ 2,217 mg/kg(rat), $LC_{50}$ 88.8 mg/L(rat, skin) which cause high level of skin irritation, reported 1 $mg/m^3$ of NOAEL, while LOAEL was less than 100 mg/kg for the rats orally administered with the $LD_{50}$ 2,217 mg/kg(rat), $LC_{50}$ 88.8 mg/L(rat, skin), for 13 weeks. Domestically 31,640 ton/y of ammonium nitrate has been used in 22 workplace and the result of workplace assessment was 0.0171-0.9983 $mg/m^3$. ADD was 8.77-59.63 ${\mu}g/kg-day$ according to the exposure scenario. In other words the result of the risk assessment goes beyond the 'standard 1'. Conclusions: Ammonium nitrate creates a high level of irritation and toxicity when coming in breathe it or contact with skin, and is classified as category3 of GHS and specific target organ toxicant (irritating respiratory system). Exposure level at work places needs to be maintained under $1mg/m^3$, to prevent workers from being damaged.

Ammonium and Nitrate Uptake and Utilization Efficiency of Rice varieties as Affected by Different N-Concentrations

  • Choi Kyung-Jin;Swiader John M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • To find out the optimum mixture ratio of ammonium and nitrate on rice plant, 4 rice varieties were examined during 14days after transplanting in hydroponics with the different ratio of ammonium to nitrate(100 : 0, 75: 25,50: 50, 25: 75 and 0: 100). The highest N uptake from solution and the maximum plant dry weight were $60\~70\%$ ammonium and $30\~40\%$ nitrate mixture treatment both in Japonica and Tongil type rice plants. And with the same varieties N-uptake and N use-efficiency were compared between 10.0 mM and 1.0 mM nitrogen using $70\%$ ammonium and $30\%$ nitrate for 24 days after transplanting. Rice plants absorbed more nitrogen$(131\~145\%)$ in 10.0mM than 1.0mM treatment but accumulated N in rice plants were almost the same in both treatment. Among the tested rice cultivars, dry matter production and total accumulative nitrogen in rice plants were much high in Tongil type than japonica type rice cultivars. N-recovery ratios of rice plants from uptake N were $90.8-99.0\%$ in low concentration N solution(1.0 mM), but $69.4-81.7\%$ were observed in high concentration N solution(10.0 mM). It means that suppling low concentration N steadily will be better to prevent loss of N without reducing of growth in rice plants.

Seasonal variation of concentration and size distribution of Ionic species on aerosol in urban air (도시대기 입자상물질중 수용성 성분의 농도와 입경분로의 계절적 변동)

  • 이승일;황경철;조기철;신영조;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.64-71
    • /
    • 1996
  • Measurement of concentration and size distribution of TSP, ammonium, nitrate and sulfate were made from Mar., 1991. to June., 1992 in Seoul. The seasonal variation of concentration and size distribution of aerosols has been investiated. Aerosol were collected and size frationated by Andersen air sampler. Size classified samples were extrated with deionized water and analyzed for ammonium, nitrate and sulfate by ion chromatography. As the results of measurement, the average of concentration and MMAD(mass median aerodynamic diameter) were $118.58 \mu g/m^3$, and $2.77 \mu m$ for TSP, $1.92 \mu g/m^3$ and $1.35 \mu m$ for ammonium, $1.34 \mu g/m^3$ and $1.58 \mu m$ for nitrate, $8.52 \mu g/m^3$ and $2.15 \mu m$ for sulfate. The Seasonal variation of concentration and size distribution was observed for ammonium, nitrate and sulfate. The concentration peak of TSP was observed in coarse particles in spring and observed in fine particles in winter. The concentration's distribution of TSP, ammonium, nitrate and sulfate was observed bimodal type during all season.

  • PDF