• Title/Summary/Keyword: Ammonium accumulation

검색결과 82건 처리시간 0.024초

Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates

  • Ahn, Junmo;Jho, Eun Hea;Nam, Kyoungphile
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.246-253
    • /
    • 2015
  • The effects of carbon-to-nitrogen (C/N) ratio in simulated rice straw hydrolysates using glucose and ammonium chloride on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator was investigated. In general, PHA accumulation rate was higher under higher degrees of N-deficient conditions (e.g., C/N ratio of 360:1) than lower degrees of N-deficient conditions (e.g., C/N ratio of 3.6:1 and 36:1). Also, the most PHA accumulation was observed during the first 12 h after the PHA accumulation initiation. This study showed that the similar PHA accumulation could be achieved by using different accumulation periods depending on C/N ratios. N source presence was important for new cell production, supported by approximately ten times greater PHA accumulation under the N-deficient condition ($NH_4Cl$ 0.01 g/L) than the N-free (without $NH_4Cl$) condition after 96 h. C/N ratio of the rice straw hydrolysate was approximately 160:1, based on the glucose content, and this accumulated $0.36{\pm}0.0033g/L$ PHA with PHA content of $21{\pm}3.1%$ after 12 h. Since external C or N source addition for C/N ratio adjustment increases production cost, an appropriate accumulation period may be used for PHA accumulation from organic wastes, based on the PHA accumulation patterns observed at various C/N ratios and C and N concentrations.

Biofilm airlift 반응기를 이용한 선택적 질산화의 연구

  • 윤호준;장재선;김동진
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.457-460
    • /
    • 2000
  • Biofilm airlift 반응기를 이용한 선택적 질산화는 air가 2.5 L/min, $NH_4\;^+-N$ load가 $2.5\;kg-N/m^3/d$에서 약 90% 이상의 질소 제거율과 75-90%의 아질산성 질소의 축적이 일어났다. nitrite oxidizer가 낮은 DO의 영향으로 activity가 저해를 받아서 nitrite를 산화시키지 못하여 축적을 일으킨 것으로 보인다. 반응기 내부의 미생물의 양이 가장 많은 기간에 질소 제거율이 저하하고 nitrite ratio가 약간 감소됨을 보였다. 이는 많은 미생물의 양으로 용존산소가 감소되었기 때문이다. 미생물의 양에 따른 질소 부하의 증거로 F/M 비를 맞추어 그에 따른 질산화를 관찰하는 연구를 할 수 있을 것 같다.

  • PDF

Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment

  • Khirul, Md Akhte;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.274-280
    • /
    • 2020
  • The marine sediment sustains from the anoxic condition due to increased nutrients of external sources. The nutrients are liberated from the sediment, which acts as an internal source. In hypoxic environments, anaerobic respiration results in the formation of several reduced matters, such as N2 and NH4+, N2O, Fe2+, H2S, etc. The experimental results have shown that nitrogen and sulfur played an influential, notable role in this biogeochemical cycle with expected chemical reductions and a 'diffusive' release of present nutrient components trapped in pore water inside sediment toward the bulk water. Nitate/ammonium, sulfate/sulfides, and ferrous/ferric irons are found to be the key players in these sediment-waters mutual interactions. Organonitrogen and nitrate in the sediment were likely to be converted to a form of ammonium. Reductive nitrogen is called dissimilatory nitrate reduction to ammonium and denitrification. The steady accumulation in the sediment and surplus increases in the overlying waters of ammonium strongly support this hypothesis as well as a diffusive action of the involved chemical species. Sulfate would serve as an essential electron acceptor so as to form acid volatile sulfides in present of Fe3+, which ended up as the Fe2+ positively with an aid of the residential microbial community.

Optimization of Fed-Batch Fermentation for Production of Poly-$\beta$-Hydroxybutyrate in Alcaligenes eutrophus

  • Lee, In-Young;Choi, Eun-Soo;Kim, Guk-Jin;Nam, Soo-Wan;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.146-150
    • /
    • 1994
  • Production of poly-$\beta$-hydroxybutyrate (PHB) in fed-batch fermentation was studied. Utilization of carbon for PHB biosynthesis was investigated by using feeding solutions with different ratios of carbon to nitrogen (C/N). It was observed that at a high C/N ratio carbon source was more preferably utilized for PHB accumulation while its consumption for cellular metabolism appeared to be more favored at a low C/N value. A high cell concentration (184 g/l) was achieved when ammonium hydroxide solution was fed to control the pH, which was also utilized as the sole nitrogen source. For the mass production of PHB, two-stage fed-batch operations were carried out where PHB accumulation was observed to be stimulated by switching the ammonium feeding mode to the nitrogen limiting condition. A large amount of PHB (108 g/l) was obtained with cellular content of 80% within 50 hrs of operation.

  • PDF

폐수 내 고농도 free ammonia(FA)가 미세조류의 성장 및 기질제거에 미치는 영향 평가 (Effect of high free ammonia concentration on microalgal growth and substrate uptake)

  • 김은지;조재형;노경호;남귀숙;황선진
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.715-723
    • /
    • 2016
  • This study investigated the effect of high concentration of free ammonia on microalgal growth and substrate removal by applying real wastewater nitrogen ratio. To test of this, the conditions of free ammonia 1, 3, 6, 9, 12, 15 mg-N/L are compared. After 3 days of incubation, algal growth of Chlorella vulgaris and carbon removal rate are respectively lower in the reactors of FA 12, 15 mg-N/L compared to the others. This indicates that the high concentration of free ammonia, in this case, above 12 mg-N/L, has negative effect on algal growth and metabolic activity. Also, high concentration of free ammonia causes the proton imbalance, ammonium accumulation in algae and has toxicity for these reasons. So, we have to consider free ammonia in applying the microalgae to wastewater treatment system by the way of diluting wastewater or controlling pH and temperature.

Carotenogenesis in Haematococcus lacustris: Role of Protein Tyrosine Phosphatases

  • Park, Jae-Kweon;Tran, Phuong Ngoc;Kim, Jeong-Dong;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.918-921
    • /
    • 2009
  • In the present study, we examined the inhibitory effects of protein tyrosine phosphatase (PTPase) inhibitors, including sodium orthovanadate (SOV), ammonium molybdate (AM), and iodoacetamide (IA), on cell growth, accumulation of astaxanthin, and PTPase activity in the photosynthetic algae Haematococcus lacustris. PTPase activity was assayed spectrophotometrically and was found to be inhibited 60% to 90% after treatment with the inhibitors. SOY markedly abolished PTPase activity, significantly activating the accumulation of astaxanthin. These data suggest that the accumulation of astaxanthin in H. lacustris results from the concerted actions of several PTPases.

슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적 (Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste)

  • 황인수;민경석;윤주환
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

Oxalate Accumulation in Forage Plants: Some Agronomic, Climatic and Genetic Aspects

  • Rahman, M.M.;Kawamura, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권3호
    • /
    • pp.439-448
    • /
    • 2011
  • Oxalic acid is synthesized by a wide range of plants. A few of them are forage plants that can cause oxalate poisoning in ruminants under certain conditions. In this paper, the role of some agronomic, climatic and genetic factors in minimizing oxalate accumulation in forage plants has been discussed. Research indicates that the content of oxalate in forage can be controlled by fertilizer application. For example, nitrate application resulted in higher contents of soluble and insoluble oxalates than ammonium application. With an increased rate of potassium application, soluble oxalate content showed an increasing trend and insoluble oxalate content showed a decreasing trend. With an increased rate of calcium application, soluble oxalate content showed a decreasing trend and insoluble oxalate content showed a reverse trend. Other agronomic factors such as growing season, harvesting practices, plant maturity, plant species, plant variety and plant parts can also have a large effect on oxalate accumulation. However, the potential benefits of the above approaches for improving forage quality have not been fully exploited. In addition, there is still insufficient information to fully utilize means (e.g. plant nutrients, season and soil moisture) to minimize oxalate accumulation in forage plants. Therefore, more research is required for a better understanding of the interactions between oxalate and the above-mentioned factors in forage plants.

생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성 (Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter)

  • 윤종문;김동진;유익근
    • Korean Chemical Engineering Research
    • /
    • 제44권2호
    • /
    • pp.200-206
    • /
    • 2006
  • 세라믹 담체가 충진된(공극률 32%) 생물여과 반응기(BAF)를 이용하여 암모니아성 질소폐수를 처리할 때, 수리학적 체류시간(HRT) 및 폭기량의 변화가 아질산 축적에 미치는 영향에 대해서 고찰하였다. 암모니아성 합성 폐수 및 석유화학 실폐수를 $1.6kgNH_4^+-N/m^3{\cdot}d$ 내외의 질소 부하로 BAF에 공급하였을 때, 암모니아성 질소의 제거율은 폭기량 증가에 비례하였으나 아질산 축적률은 폭기량 외에도 HRT의 영향을 받았다. 0.23시간의 HRT에서(공탑 체류시간 기준 0.7시간)는 0.23, 0.45, 0.56 cm/s로 공기 선속도를 증가시키면, 암모니아성 질소 제거율은 각각 73, 90, 92%로 증가하였으나 아질산 축적비($NO_2-N/NO_x-N$)는 0.92, 0.82, 0.48로 점차 감소하였다. 반면에 HRT 0.9시간, 공기 선속도 0.34~0.45 cm/s 범위에서는 암모니아성 질소 제거율 89%, 아질산 축적비 0.13 내외로 아질산 축적률이 급격하게 감소하였다. 공기 선속도 0.34 cm/s, HRT 1.4시간에서는 암모니아성 질소 제거율의 감소로 free ammonia(FA, $NH_3-N$) 농도가 상승하였고, 이후 약 50일에 걸쳐 아질산 축적비는 0.95 이상까지 점차 증가하였다. 본 연구에서는 HRT 0.23시간에서의 FA 농도 및 폭기 조건이 HRT 0.9시간 조건에 비해 아질산 축적에 더 불리했음에도 HRT 0.23시간에서의 아질산 축적률이 더 높게 나타났다. 따라서 FA 농도, 폭기 조건 외에도 HRT, 질소 부하 조건에 따라 BAF에서 아질산 축적량이 영향을 받았다. 반면에 FA 농도가 매우 높게(FA 5~15 mgN/L) 유지되는 조건에서는 운전 조건에 상관없이 아질산 축적이 안정하게 일어났으며 이 경우는 암모니아성 질소 제거율이 감소하였다.

Methylobacterium sp. GL-10의 유가식 배양에 의한 Methanol로 부터 Poly-$\beta$-hydroxybutyrate의 생산 (Production of Poly-$\beta$-hydroxybutyrate from Methanol by Fed-batch Cultivation of methylobacterium sp. GL-10)

  • 이호재;이용현
    • KSBB Journal
    • /
    • 제6권1호
    • /
    • pp.35-43
    • /
    • 1991
  • The production of poly-$\beta$-hydroxybutyrate(PHB) from methanol by batch and fed-batch cultivations of Methylobacterium sp. GL-10 was studied. PHB accumulation was stimulated by the nutrients deficiency including, NH4+, SO42-, and K+. The nitrogen deficiency was the most critical factor for PHB accumulation. In batch cultivation, the maximum cell concentration and PHB content were 1.86g/l and 0.62g/l, respectively, with 1.0%(v/v) of methanol and 0.5g/1 of ammonium sulfate. The mass doubling time of Methylobacterum sp. GL-10 was in the range of 4-5 hrs. The cell growth and PHB accumulation were severely inhibited at the methanol concentration over than 2% (v/v). To overcome methanol Inhibition, constant feeding and intermittent feedillg fed-batch cultivations were adopted, using C/N molar ratio as a control factor. In constant feeding fed-batch process, cell concentration was increased up to 2.67g/1, and PHB yield was enhanced from 0.33 of batch culture to 0.53. The relatively low cell concentration was caused by methanol accumulated in culture broth at late growth phase. To prevent methanol accumulation and to maximize PHB production, DO-state intermittent fed-batch cultivation was attempted. The cell and PHB concentration was reached up to 4.55g/1 and 1.80g/1, respectively. It was possible to maintain methanol concentration low and also to feed nutrient of desired C/N molar ratio.

  • PDF