• Title/Summary/Keyword: Ammonium accumulation

Search Result 82, Processing Time 0.027 seconds

Efficient Phosphinothricin Mediated Selection of Callus Derived from Brachypodium Mature Seed

  • Jeon, Woong Bae;Lee, Man Bo;Kim, Dae Yeon;Hong, Min Jeong;Lee, Yong Jin;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • Brachypodium distachyon is rapidly emerged in biological study and has been currently used as a model system for genetics and functional studies for crop improvement and biofuel production. Phosphinothricin (PPT) has been widely used as a selectable agent, which raises ammonium content and induces toxicity in non-transformed plant cells. However PPT selection is not much effective on Brachypodium callus consequently reducing transformation efficiency. In order to identify the efficient conditions of PPT selection, calli obtained from mature seeds of Brachypodium (PI 254867) were cultured on the callus inducing medium (CIM) or regeneration medium (ReM) containing serial dilutions of the PPT (0, 2, 5, 10, and 15 mg/l) in dark or light condition. Callus growth and ammonium content of each treatment were measured 2 weeks after the treatment. Although callus growth and ammonium content did not show much difference in CIM, slow callus growth and increased ammonium accumulation were found in ReM. No significant difference of ammonium accumulation in response to PPT was found between dark and light conditions. In order to identify major factors affecting increased ammonium accumulation, callus was cultured on the media in combined with phytohormones (2,4-D or kinetin) and carbon sources (sucrose or maltose) containing with PPT (5 mg/l). The highest ammonium content in callus was found in the kinetin and maltose media.

Nutrient dynamics in montane wetlands, emphasizing the relationship between cellulose decomposition and water chemistry

  • Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.33-42
    • /
    • 2005
  • Wetlands often function as a nutrient sink. It is well known that increased input of nutrient increases the primary productivity but it is not well understood what is the fate of produced biomass in wetland ecosystem. Water and sediment quality, decomposition rate of cellulose, and sediment accumulation rate in 11 montane marshes in northern Sierra Nevada, California were analyzed to trace the effect of nitrogen and phosphorus content in water on nutrient dynamics. Concentrations of ammonium, nitrate, soluble reactive phosphorus (SRP) in water were in the range of 27 to 607, 8 to 73, and 6 to 109 ppb, respectively. Concentrations of ammonium, calcium, magnesium, sodium, and potassium in water were the highest in Markleeville, which has been impacted by animal farming. Nitrate and SRP concentrations in water were the highest in Snow Creek, which has been impacted by human residence and a golf course. Cellulose decomposition rates ranged from 4 to 75 % per 90 days and the highest values were measured in Snow Creek. Concentrations of total carbon, nitrogen, and phosphorus in sediment ranged from 8.0 to 42.8, 0.5 to 3.0, and 0.076 to 0.162 %, respectively. Accumulation rates of carbon, nitrogen, and phosphorus fluctuated between 32.7 to 97.1, 2.4 to 9.0, and 0.08 to $1.14gm^{-2}yr{-1}$, respectively. Accumulation rates of carbon and nitrogen were highest in Markleeville and that of phosphorus was highest in Lake Van Norden. Correlation analysis showed that decay rate is correlated with ammonium, nitrate, and SRP in water. There was no correlation between element content in sediment and water quality. Nitrogen accumulation rate was correlated with ammonium in water. These results showed that element accumulation rates in montane wetland ecosystems are determined by decomposition rate rather than nutrient input. This study stresses a need for eco-physiological researches on the response of microbial community to increased nutrient input and environmental change because the microbial community is responsible for the decomposition process.

  • PDF

Rapid Diagnosis of Resistance to Glufosinate-ammonium in Transgenic Sweet Potato (형질전환 고구마에 대한 Glufosinate-ammonium 저항성 간이진단법)

  • Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.380-389
    • /
    • 2010
  • Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] produced through a biolistic transformation were used in this study. The objective of this research was to find out a rapid and reliable assay method for confirming glufosinate-ammonium resistance. The techniques tested include whole-plant bioassay, one leaf bioassay, and leaf disk bioassay. Parameters investigated in this study were leaf injury and ammonium accumulation at 1 and 5 days after treatment of glufosinate-ammonium. In the leaf disk bioassay, leaf injury of the transgenic line 7171 was 1.9-fold less affected by glufosinate-ammonium than the wild type. The leaf injury of 7171 in one leaf and whole-plant bioassays was 59- and 92-fold less affected by glufosinate-ammonium, respectively, compared with that of the wild type. Leaf disk, one leaf, and whole-plant bioassays showed that ammonium accumulation of the 7171 was 2 to 20-, 4 to 43-, and 6 to 115-fold less affected by 0.5-5 mM glufosinate-ammonium than that of the wild type. All three bioassays successfully distinguished the resistance from the transgenic lines, but one leaf bioassay is the simplest and quickest. Leaf injury and ammonium accumulation were the same in leaves 1, 3, 5, 7, and 10 of 3 mM glufosinate-ammonium treated plants or nontreated plants. The one leaf bioassay was chosen as the standard procedure for future confirmation of resistance in transgenic sweet potato because it is a rapid and reliable assay.

Levels of Resistance and Fitness in Glufosinate-ammonium-Resistant Transgenic Rice Plants (Glufosinate-ammonium 저항성 형질전환벼의 저항성 수준과 적응성에 관한 연구)

  • Yun, Young Beom;Kuk, Yong In
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • The objectives of this research were to quantify resistance levels of transgenic rice expressing the bar gene to glutamine synthetase (GS)-inhibiting, and methionine sulfoximine and photosynthesis-inhibiting herbicide, paraquat, and compare the ammonium accumulation, chilling injury, and yield between transgenic and non-transgenic rice. The transgenic rice lines were 45-96-fold more resistant to glufosinate-ammonium than non-transgenic rice. The transgenic rice lines were also 18-fold more resistant to methionine sulfoximine, but was not resistant to paraquat, which has different target site. Glufosinate-ammonium increased the ammonium accumulation in leaves of non-transgenic rice plants, but had minimal or no effect on leaves of transgenic lines. The transgenic lines except for 258, 411, 607 and 608 were more susceptible during chilling and recovery than non-transgenic rice plants. The yield of transgenic lines 142, 144, 258 and 608 was similar or higher than that of non-transgenic rice in pot conditions.

PHB Accumulation Stimulated by Ammonium Ions in Potassium-limited Cultures of Methylobacterium organophilum

  • Kim, Seon-Won;Kim, Pil;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.301-304
    • /
    • 1998
  • Methylobacterium organophilum can use nitrogen in the form of ammonium ions ($($NH_4$)_2SO_4\;and\;NH_4Cl) and from nonammonium sources such as glycine, alanine, peptone, and yeast extract. When potassium was limited, significantly more PHB was produced when the ammonium ion was the nitrogen source rather than a nonammonium form. With ammonium, the amount of PHB produced was 0.50-0.53 g PHB/l or $52.0~53.2\%$ of the dry cell weight. If nitrogen was from a nonammonium source, the respective values were 0.04~0.06 g PHB/1 or $8.1~11.3\%$ of dry cell weight. When ammonium sulfate was the sole source of nitrogen under potassium-limited conditions, cell growth and PHB accumulation increased as the pH increased from 6.0 to 7.5. Cell growth and PHB amount at pH 7.5 were 2.50 g dry cell weight/1 and 1.40 g PHB/1, respectively.

  • PDF

Effects of various Nitrite and Ammonium Nitrogen Concentrationes in the Application of ANAMMOX of Piggery Waste (돈사폐수의 ANAMMOX 적용에 있어서 아질산성 질소 및 암모니아성 질소의 농도에 따른 영향)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.482-491
    • /
    • 2006
  • The anaerobic ammonium oxidation (ANAMMOX) from substrates with various $NO_2-N$ and $NH_4-N$ concentationes, which were generated from piggery waste was accomplished by using anaerobic granular sludge as seeding sludge. As the result of operation, when $NO_2-N/NH_4-N$ ratios of ANAMMOX influent were 0.6~1.5, $NO_2-N/NH_4-N$ removal ratios were exhibited 1.19~2.07 (average 1.63). The higher influent $NO_2-N/NH_4-N$ ratios resulted in higher $NO_2-N/NH_4-N$ removal ratios by ANAMMOX. It means that $NO_2-N$ concentration is very important factor in ANAMMOX. Specific ammonium removal rate was constantly as $0.03{\sim}0.04gNH_4-N/g$ VSS-day at $35^{\circ}C$ while it was $0.01gNH_4-N/g$ VSS-day at $20{\sim}30^{\circ}C$. Thus, in order to reduce the effluent N concentration, either an increase of ANAMMOX reactor HRT or more biomass accumulation at the optimal temperature can be considered.

Effect of Temperature and FA Concentration on the Conversion of Ammonium to Nitrite (온도와 FA 농도가 암모늄 이온의 아질산 전환에 미치는 영향)

  • Kim, Jung Hoon;Song, Young Chae;Park, Hung Suck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.427-432
    • /
    • 2006
  • The effects of free ammonia (FA) concentration and temperature on nitrite accumulation were studied. To estimate the most effective ammonium oxidation and nitrite build-up condition, nitrification tests were conducted in batch conditions at various FA concentrations, and at different ammonium concentration and temperature. The activation energies of ammonium oxidizer were 81.7 KJ/mol below $20^{\circ}C$, and 32.5 KJ/mol over $20^{\circ}C$, while that of nitrite oxidizer was 35.5 KJ/mol irrespective of temperature variations. The results of nitrification tests conducted at different FA concentrations and temperatures showed that temperature strongly affects nitrite accumulation, while effects due to FA concentrations were found negligible.

Maximization of Poly-$\beta$-Hydroxybutyrate Accumulation by Potassium Limitation in Methylobacterium organophilum and Its Related Metabolic Analysis

  • Kim, Seon-Won;Kim, Pil;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.140-146
    • /
    • 1999
  • When methanol was the sole carbon source, Methylobacterium organophilum NCIB 11278, a facultative methylotroph, accumulated Poly-$\beta$-hydroxybutyrate (PHB) as 59% (w/w) of dry cell weight under potassium limitation, 37% under sulfate limitation, and 33% under nitrogen limitation. Based on a stoichiometric analysis of PHB synthesis from methanol, it was suspected that PHB synthesis is accompanied by the overproduction of energy, either 6-10 ATP and 1 $FADH_2$ or 6 ATP and 3 NADPH to balance the NADH requirement, per PHB monomer. This was confirmed by observation of increased intracellular ATP levels during PHB accumulation. The intracellular ATP with limited potassium, sulfate, and ammonium increased to 0.185, 0.452, and 0.390 $\mu$moles ATP/g Xr (residual cell mass) during PHB accumulation, respectively. The intracellular ATP level under potassium limitation was similar to that when there was no nutrient limitation and no PHB accumulation, 0.152- 0.186 $\mu$moles ATP/g Xr. We propose that the maximum PHB accumulation observed when potassium was limited is a result of the energy balance during PHB accumulation. Microorganisms have high energy requirements under potassium limitation. Enhanced PHB accumulation, in ammonium and sulfate limited conditions with the addition of 2,4-dinitrophenol, which dissipates surplus energy, proves this assumption. With the addition of 1 mM of 2,4-dinitrophenol, the PHB content increased from 32.4% to 58.5% of dry cell weight when nitrogen limited and from 15.1 % to 31.0% of dry cell weight when sulfate limited.

  • PDF

Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter (Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성)

  • Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.