• Title/Summary/Keyword: Ammonium Nitrate

검색결과 529건 처리시간 0.032초

간척지 토양환경 조건별 토양내 질소 동태와 영향 요소 (Fate of Nitrogen Influenced by Circumstances of a Reclaimed Tidal Soils)

  • 한상균;김혜진;송진아;정덕영
    • 한국토양비료학회지
    • /
    • 제44권5호
    • /
    • pp.745-751
    • /
    • 2011
  • In most agricultural soils, ammonium ($NH_4^+$) from fertilizer is quickly converted to nitrate ($NO_3^-$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. However, nitrification studies have been studied extensively in agricultural soils, not in a newly reclaimed tidal soil which show saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea introduced into reclaimed tidal soil is important for nutrient management and environmental quality. This paper reviewed studies regarding to transformation and fate of nitrogen sources such as urea under the circumstances of a reclaimed tidal soils located in a western coastal area.

Removing nitrogenous compounds from landfill leachate using electrochemical techniques

  • Nanayakkara, Nadeeshani;Koralage, Asanga;Meegoda, Charuka;Kariyawasam, Supun
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.339-346
    • /
    • 2019
  • In this research, applicability of electrochemical technology in removing nitrogenous compounds from solid waste landfill leachate was examined. Novel cathode material was developed at laboratory by introducing a Cu layer on Al substrate (Cu/Al). Al and mild steel (MS) anodes were investigated for the efficiency in removing nitrogenous compounds from actual leachate samples collected from two open dump sites. Al anode showed better performances due to the effect of better electrocoagulation at Al surface compared to that at MS anode surface. Efficiency studies were carried out at a current density of $20mA/cm^2$ and at reaction duration of 6 h. Efficiency of removing nitrate-N using Al anode and developed Cu/Al cathode was around 90%. However, for raw leachate, total nitrogen (TN) removal efficiency was only around 30%. This is due to low ammonium-N removal as a result of low oxidation ability of Al. In addition to the removal of nitrogenous compounds, reactor showed about 30% removal of total organic carbon. Subsequently, raw leachate was diluted four times, to simulate pre-treated leachate. The diluted leachate was treated and around 88% removal of TN was achieved. Therefore, it can be said that the reactor would be good as a secondary or tertiary treatment step in a leachate treatment plant.

Electrodeposition of SnO2-doped ZnO Films onto FTO Glass

  • Yoo, Hyeonseok;Park, Jiyoung;Kim, Yong-Tae;Kim, Sunkyu;Choi, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.61-68
    • /
    • 2019
  • Well aligned $SnO_2$-doped ZnO nanorods were prepared by single step or 2-step electrochemical depositions in a mixture solution of zinc nitrate hexahydrate, ammonium hydroxide solution and 0.1 M tin chloride pentahydrate. The morphologies of electrochemically deposited $SnO_2$-doped ZnO were transformed from plain (or network) structures at low reduction potential to needles on hills at high reduction potential. Well aligned ZnO was prepared at intermediate potential ranges. Reduction reagent and a high concentration of Zn precursor were required to fabricate $SnO_2$ doped ZnO nanorods. When compared to results obtained by single step electrochemical deposition, 2-step electrochemical deposition produced a much higher density of nanorods, which was ascribed to less potential being required for nucleation of nanorods by the second-step electrochemical deposition because the surface was activated in the first-step. Mechanisms of $SnO_2$ doped ZnO nanorods prepared at single step or 2-step was described in terms of applied potential ranges and mass-/charge- limited transfer.

해수에서 분리된 Pelagicola sp. DSW4-44의 초안 유전체 서열분석 (Draft genome sequence of Pelagicola sp. DSW4-44 isolated from seawater)

  • 오지성;노동현
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.283-285
    • /
    • 2019
  • 이 연구에서는 Illumina Hiseq platform을 사용하여 동해 심층 해양수로부터 분리된 Pelagicola sp. DSW4-44 (= KCTC 62762 = KCCM 43261)의 초안 유전체 염기서열 해독을 수행하였다. 그 결과, 유전체는 대략 4.85 Mbp의 길이 및 54.3%의 G + C 함량으로 구성되었고, 전체 4,566개의 단백질 암호 유전자, 3개의 rRNA 유전자, 48개의 tRNA 유전자, 3개의 non-coding RNA 유전자 및 67개의 위유전자(pseudo gene)가 확인되었다. 초안 유전체에서 균주 DSW4-44는 Pelagicola 속의 다른 균주에서 발견되지 않는 이화적 질산염의 암모늄 환원과 탈질화의 질소대사 유전자를 가지고 있었다.

Highly Sensitive and Selective Trimethylamine Sensor Using Yolk-shell Structured Mo-doped Co3O4 Spheres

  • Kim, Tae-Hyung;Kim, Ki Beom;Lee, Jong-Heun
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.271-276
    • /
    • 2019
  • Pure and 0.5, 1, 2, 5, and 10 at% of Mo-doped $Co_3O_4$ yolk-shell spheres were synthesized by ultrasonic spray pyrolysis of droplets containing Co nitrate, ammonium molybdate, and sucrose and their gas sensing characteristics to 5 ppm trimethylamine (TMA), ethanol, p-xylene, toluene, ammonia, carbon monoxide, and benzene were measured at $225-325^{\circ}C$. The sensor using pure $Co_3O_4$ yolk-shell spheres showed the highest response to p-xylene and very low response to TMA at $250^{\circ}C$, while the doping of Mo into $Co_3O_4$ tended to increase the overall responses of gas sensors. In particular, the sensor using 5 at% Mo-doped $Co_3O_4$ yolk-shell spheres exhibited the high response to TMA with low cross-responses to other interfering gases. The high response and selectivity of Mo-doped $Co_3O_4$ yolk-shell spheres to TMA are attributed to the electronic sensitization by higher valent Mo doping and acid-base interaction between TMA and Mo components.

Investigation of blasting impact on limestone of varying quality using FEA

  • Dimitraki, Lamprini S.;Christaras, Basile G.;Arampelos, Nikolas D.
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.111-121
    • /
    • 2021
  • Large deformation and rapid pressure propagation take place inside the rock mass under the dynamic loads caused by the explosives, on quarry faces in order to extract aggregate material. The complexity of the science of rock blasting is due to a number of factors that affect the phenomenon. However, blasting engineering computations could be facilitated by innovative software algorithms in order to determine the results of the violent explosion, since field experiments are particularly difficult to be conducted. The present research focuses on the design of a Finite Element Analysis (FEA) code, for investigating in detail the behavior of limestone under the blasting effect of Ammonium Nitrate & Fuel Oil (ANFO). Specifically, the manuscript presents the FEA models and the relevant transient analysis results, simulating the blasting process for three types of limestone, ranging from poor to very good quality. The Finite Element code was developed by applying the Jones-Wilkins-Lee (JWL) equation of state to describe the thermodynamic state of ANFO and the pressure dependent Drucker-Prager failure criterion to define the limestone plasticity behavior, under blasting induced, high rate stress. A progressive damage model was also used in order to define the stiffness degradation and destruction of the material. This paper performs a comparative analysis and quantifies the phenomena regarding pressure, stress distribution and energy balance, for three types of limestone. The ultimate goal of this research is to provide an answer for a number of scientific questions, considering various phenomena taking place during the explosion event, using advanced computational tools.

분말활성탄을 활용한 미세먼지 흡착형 경화체의 물리적 특성 (Physical Properties of Fine Dust Adsorption Matrix using Powder Activate Carbon)

  • 이원규;김연호;경인수;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.172-173
    • /
    • 2019
  • As the damage to fine dust increased, the Republic of Korea designated fine dust as a social disaster. The composition of the fine dust is composed of carbon, sulfate, nitrate, ammonium and minerals. The cause of fine dust is naturally generated by dirt, pollen, etc. In addition, there are artificial causes such as gaseous vehicle exhaust gas emitted from the use of fossil fuel. When fine dust enters the human body through breathing, it causes various respiratory diseases and skin diseases. In IARC, fine dust was designated as a carcinogen group 1. In this research, we tried to adsorb fine dust by physical adsorption using powdered activate carbon. Powdered activate carbon is a powdered activated carbon activated in a carbonized state. Porous material with high specific surface area and low density. Experimental items were tested for density, water absorption, and fine dust concentration according to the PAC addition ratio. Basic experiments were carried out to fabricate the fine dust adsorption matrix.

  • PDF

Development of Ion-Selective Electrodes for Agriculture

  • Yang-Rae Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.153-153
    • /
    • 2022
  • There is a growing need to develop ion sensors for agriculture. As a result, several technologies have been developed, such as colorimetry, spectrophotometry, and ion-selective electrode (ISE). Among them, ISE has some advantages compared to others. First, it does not require pre-treatment processes and expensive equipment. Second, it is possible for the portable detection system by introducing small-sized electrodes. Finally, real-time and multiple detections of several ions are pursued. It is well-known that N, P, and K nutrients are critical for crop growth. With the development of agriculture techniques, the importance of soil nutrient analysis has attracted much attention for cost-effective and eco-friendly agriculture. Among several issues, minimizing the use of fertilizers is significant through quantitative analysis of soil nutrients. As a result, it is highly important to analyze certain nutrients, such as N (ammonium ion, nitrate ion, nitrite ion), P (dihydrogen phosphate ion, monohydrogen phosphate ion), and K (potassium ion). Therefore, developing sensors for accurate analysis of soil nutrients is highly desired. n this study, several ISEs have been fabricated to detect N, P, and K. Their performance has been intensively studied, such as sensitivity, selectivity coefficient, and concentration range, and compared with commercialized ISEs. In addition, preliminary tests on the in-situ N, P, and K monitoring have been conducted inside the soil.

  • PDF

경기도(京畿道) 광주지방(廣州地方)의 잣나무임분(林分)에 있어서 전질소(全窒素)의 분포(分布)와 무기태(無機態) 질소(窒素)의 계절적(季節的) 변화(變化) (Total Nitrogen Distribution and Seasonal Changes in Inorganic Nitrogen at a Pinus koraiensis Stand in Kwangju-gun, Kyǒnggi-do, Korea)

  • 신준환;이돈구
    • 한국산림과학회지
    • /
    • 제69권1호
    • /
    • pp.56-68
    • /
    • 1985
  • 본(本) 연구(硏究)는 경기도(京畿道) 광주군(廣州郡) 도척면(都尺面)에 위치(位置)한 서울대학교(大學校) 중부연습림(中部演習林)의 24년생(年生) 잣나무 인공조림지(人工造林地)를 대상(對象)으로 하여 (1) 임분내(林分內) 전질소(全窒素)의 분포(分布)를 조사(調査)하여 갱신법(更新法)에 따른 잣나무림(林) 생태계(生態系)의 자기시비계(自己施肥系)가 받는 충격(衝擊)의 정도(程度)를 알아보며, (2) 그 임분(林分)의 토양(土壤)에서 여러 깊이에 따른 무기태(無機態) 질소(窒素)의 계절별(季節別) 변화양상(變化樣相)을 암모니아태(態) 질소(窒素)와 질산태(窒酸態) 질소(窒素)로 나누어 분석연구(分析硏究) 하고, 또한 잣나무림(林)에 있어서 질소질양료(窒素質養料)에 대(對)한 자기시비기구(自己施肥機構)를 연구(硏究)하여 적절(適切)한 시비시기(施肥時期)와 방법(方法)에 대한 정보(情報)를 얻으려고 시도(試圖)하였는데 다음과 같은 결론(結論)을 얻을 수 있었다. 1) 뿌리를 제외(除外)한 현존량(現存量)에 포함(包含)된 전질소중(全窒素中) 61.5%는 침엽중(針葉中)에, 20%는 가지에, 5.5%는 수피(樹皮)에, 13%는 수간(樹幹)의 목질부(木質部)에 분포(分布)한다. 따라서 수간(樹幹)의 목질부(木質部)만 수확(收穫)하는 것이 생태계(生態系)의 자기시비계(自己施肥系)에 충격(衝擊)을 가장 적게 준다고 볼 수 있다. 2) 토양중(土壤中)의 무기태질소(無機態窒素)의 함량(含量)은 토양(土壤)이 깊게 들어 갈수록 변화(變化)가 약해졌으며 그 함량(含量)을 계절별(季節別)로 보면 봄, 가을, 한여름, 초여름 순(順)으로 감소(減少)하였다. 이러한 양상(樣相)은 질산태질소(窒酸態窒素)의 손실(損失)이 환경인자(環境因子)에 크게 좌우(左右)되기 때문에 일어나며, 이러한 결과(結果)에 따라 속효성(速效性) 질소비료(窒素肥料)를 봄에 시비(施肥)하는 것이 가장 적합(適合)하다고 결론(結論)을 내릴 수 있었다.

  • PDF

인삼모상근 배양에서 Ginsenoside R $b_2$ 및 Rc 생성과 무기이온 흡수 (Ginsenoside R $b_2$ and Rc Formation and Inorganic Elements Uptake in Ginseng Hairy Roots Cultures)

  • 양덕조;윤길영;최규명;유승희
    • 식물조직배양학회지
    • /
    • 제27권6호
    • /
    • pp.461-468
    • /
    • 2000
  • 인삼 (Panax ginseng C.A. Meyer)의 뿌리로부터 유도 인삼모상근을 이용한 무기이온 흡수과정의 상승 및 길항작용에서 phosphorus (P $O_{4}$$^{-}$)와 nitrogen source (N $H_{4}$$^{+}$, N $O_{3}$$^{-}$)의 증가는 조직 내에 $Mg^{2+}$ 및 F $e^{2+}$ 의 흡수를 증가시키는 원인으로 확인되었다 특히, ammonium의 농도를 4배 높일 경우 F $e^{2+}$의 흡수는 13 mg/L, C $u^{2+}$의 흡수는 0.32mg/L이 증가하여 각각 47.5%와 123.1%로 현저한 이온흡수의 상승효과를 초래하였다. 이러한 결과는 인삼포장에서 인산과 질소원의 과도한 시비는 생장을 다소 증가시키고 뿌리의 철이온과 2가 무기이온 흡수도 증가시킴을 알 수 있다 유리당의 함량은 유리당의 종류에 따라 인산과 질소원의 최적 농도가 다르게 나타났다. 반면에 ginsenoside함량은 인산과 질소원 모두 가장 낮은 농도에서 가장 높았다. 인산의 경우에는 1/2 MS배지의 농도 (0.62 mM)보다 낮은 0.31 mM에서 R $b_2$는 44.7%, Rc는 29.9%가 높았다. Ammonium은 1/2 MS 배지 (10.30 mM)보다 낮은 5.15 mM에서 R $b_2$와 Rc를 각각 21.7%와 31.9% 그리고 nitrate 역시 1/2 MS배지 (9.4mM)보다 낮은 4.70 mM 에서 각각 17.6%와 25.5%의 뚜렷한 함량증가를 나타냈다. 질소원에 따른 ginsenoside 함량 증가에서는 N $H_{4}$$^{+}$가 N $O_{3}$$^{-}$보다 다소 효과적이었다. 따라서 인삼모상근의 ginsenoside생산을 높이기 위해서는 인산과 질소원의 농도를 조절한 새로운 배지가 적합한 것으로 확인되었다.

  • PDF