• 제목/요약/키워드: Ammonia conversion

검색결과 215건 처리시간 0.025초

Ru 촉매에서의 암모니아 부분산화에 대한 연구 (A Study on Ammonia Partial Oxidation over Ru Catalyst)

  • 이상호;장형준;박철웅;오세철;이선엽;김용래
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.786-794
    • /
    • 2022
  • Green ammonia is a promising renewable energy carrier. Green ammonia can be used in various energy conversion devices (e.g., engine, fuel cell, etc.). Ammonia has to be fed with hydrogen for start-up and failure protection of some energy conversion devices. Ammonia can be converted into hydrogen by decomposition and partial oxidation. Especially, partial oxidation has the advantages of fast start-up, thermally self-sustaining operation and compact size. In this paper, thermodynamics, start-up and operation characteristics of ammonia partial oxidation were investigated. O2/NH3 ratio, ammonia flow rate and catalyst volume were varied as operation parameters. In thermodynamic analysis, ammonia conversion was maximized in the O2/NH3 range from 0.10 to 0.15. Ammonia partial oxidation reactor was successfully started using 12 V glow plug. At 0.13 of O2/HN3 ratio and 10 LPM of ammonia flow rate, ammonia partial oxidation reactor showed 90% of ammonia conversion over commercial Ru catalyst. In addition, Increasing O2/NH3 ratio from 0.10 to 0.13 was more effective for high ammonia conversion than increasing catalyst volume at 0.10 of O2/NH3.

금속담지 활성알루미나 촉매의 암모니아 저온연소반응 (Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature)

  • 임윤희;이주열;박병현
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.371-379
    • /
    • 2013
  • In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over $300^{\circ}C$). However, at lower temperature ($200^{\circ}C$), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and $NO_2$, toxic by-products, were effectively inhibited.

플라즈마 버너를 적용한 요소수에서 암모니아로의 고속 전환 기술 성능 평가 (Performance Evaluation for Fast Conversion from Urea to an Ammonia Conversion Technology with a Plasma Burner)

  • 조성권;김관태;이대훈;송영훈
    • 한국대기환경학회지
    • /
    • 제32권5호
    • /
    • pp.526-535
    • /
    • 2016
  • Recently, fine dust in atmosphere have been considerably issued as a harmful element for human. Nitrogen oxide ($NO_x$) exhausted from diesel engines and power plants has been disclosed as a main source of secondary production of fine dust. In order to prevent exhausting these nitrogenous compounds into atmosphere, a treatment system with selective catalytic reduction (SCR) catalyst with ammonia as a reductant has been used in various industries. Urea solution has been widely studied to supply ammonia into a SCR catalytic reactor, safely. However, the conversion of urea solution to ammonia has several challenges, especially on a slow conversion velocity. In the present study, a fast urea conversion system including a plasma burner was suggested and designed to evaluate the performances of urea conversion and initial operation time. A designed lab-scale facility has a plasma burner, urea nozzle, mixer, and SCR catalyst which is for hydrolysis of isocyane. Flow rate of methane that is a fuel of the plasma burner was varied to control temperatures in the urea conversion facility. From experimental results, it is found that urea can be converted into ammonia using high temperature condition of above $400^{\circ}C$. In the designed test facility, it is found that ammonia can be produced within 1 min from urea injection and the result shows prospect commercialization of proposed technology in the SCR facilities.

디젤엔진 요소수 분사 SCR 시스템에서 촉매 내 암모니아 흡장량의 증가에 따른 NOx 저감효율 향상 특성에 관한 연구 (A Study on the Improvement of Diesel NOx Conversion Efficiency by Increasing the Ammonia Amount Adsorbed in a SCR Catalyst)

  • 김양화;임옥택;김홍석
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.196-203
    • /
    • 2020
  • Nowadays, urea SCR technology is considered as the most effective NOx reduction technology of diesel engine. However, low NOx conversion efficiency under low temperature conditions is one of its problems to be solved. This is because injection of UWS (Urea Water Solution) is impossible under such a low temperature condition due to the problem of insufficient of urea decomposition and urea deposits. In several previous studies, it has been reported that appropriate control of the amount of ammonia adsorbed on SCR catalyst can improve the NOx conversion efficiency under low temperature conditions. In this study, we tried to find out how much the NOx conversion efficiency increases with respect to the amount of ammonia adsorbed on the catalyst, and what the temperature conditions that the ammonia slip occurs. This study shows the results of 8 times repeated WHTC test with a diesel engine, in which UWS was injected with NH3/NOx mole ratio of '1'. Through this study, it was found that 13% of the NOx conversion efficiency of WHTC increased while the θ (ammonia adsorption rate) increased from "0%" to "22%". In addition, it is found that in cases of high θ value, the significant improvement of NOx conversion efficiency at low temperatures presented during the beginning period of WHTC and at high temperature and transient conditions presented during last part of WHTC test. The NH3 slip occurring condition was 250℃ of catalyst temperature and 10% of θ, and the amount of NH3 slip increased as the temperature and θ are increased.

Rhodotorula glutinis의 L-Phenylalanine Ammonia-Lyase의 역반응을 이용한 L-Phenylalanine 생성 (Reverse Reaction of L-Phenylalanine Ammonia-Lyase derived from Rhodotorula glutinis for the Production of L-Phenylalanine)

  • Kang, Bong-Kyung;Park, Jin-Young;Kiomin Chung
    • 한국미생물·생명공학회지
    • /
    • 제15권2호
    • /
    • pp.80-83
    • /
    • 1987
  • Rhodotorula glutinis IFO 0559에서 유래하는 L-phenylalanine ammonia lyase(EC 4. 3. 1. 5)를 이용하거나, 유도된 세포자체를 이용하여 trans-cinnamic acid로부터 L-phenylalanine을 생합성할 때 극단적인 반응액이 미치는 효소 및 세포의 안정성에 대하여 조사하였다. 그리고 안정제를 첨가한 60%의 glycerol은 효소의 안정화에 효과를 보였으며 trans-cinnamic acid에서 L-phenylalanine으로의 전이율은 80%까지 되었다. 이에 아울러 전이율을 보다 신속하고 정확히 측정할 수 있는 wavelength scanning 방법을 개발하였다.

  • PDF

10 kW 급 암모니아-수소 혼소엔진을 위한 암모니아 개질 촉매 및 반응기 설계에 관한 연구 (A Study on Ammonia Reforming Catalyst and Reactor Design for 10 kW Class Ammonia-Hydrogen Dual-Fuel Engine)

  • 이상호;최영;박철웅;김홍석;이영덕;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.372-379
    • /
    • 2020
  • Ammonia-hydrogen dual-fuel engine is a way to reduce greenhouse gas emission because ammonia and hydrogen are carbon-free fuels. In ammonia-hydrogen dual-fuel engine, hydrogen is supplied to improve the combustion characteristic of ammonia. In this study, an ammonia reformer was developed to supply hydrogen for 10 kW class ammonia-hydrogen dual-fuel engine. Thermodynamic characteristic and catalyst were investigated for ammonia reforming. Heat transfer was important for high ammonia conversion of ammonia reformer. 99% of ammonia conversion was obtained when 10 LPM of ammonia and 610℃ of hot gas were supplied to the ammonia reformer.

대기 수송중 암모니아의 암모늄염으로의 전환속도 (Conversion Rate of Gaseous Ammonia to Particulate Ammonium During Atmospheric Transport)

  • 김희강;;이용근
    • 대한화학회지
    • /
    • 제26권2호
    • /
    • pp.88-94
    • /
    • 1982
  • 요소공장의 굴뚝에서 방출되는 가스상 암모니아와 입자상 암모늄을 측정하여 대기중에서 암모니아가 암모늄으로 전환되는 속도를 추정하였다. 암모니아가 암모늄으로 전환되는 것은 대기중에서의 수송시간에 따라 2단계로 나누어진다. 수송 초기 15분동안의 전환속도는 3.2%ㅡmin$^{-1}$이고 그 후는 0.26%min$^{-1}$이었다. 수송 초기단계에서 전환속도가 빠른 것은 굴뚝에서 방출된 유출가스의 온도강하에 의하여 생성된 물방울에 암모니아가 용해하고, 또 이 알칼리성 물방울에서 요소가 분해반응을 일으킴으로써 암모늄의 농도가 급격히 증가하였기 때문인 것으로 추정되었다. 암모니아 가스의 반감기는 수송 초기단계에서 약 16분이고, 그 후는 192분이었다. 측정기간에 있어서 입자상 암모늄염과 대기온도, 상대습도, 이산화황, 질소산화물 및 부유분진 농도와의 사이에는 상관관계가 관찰되지 않았다.

  • PDF

암모니아 공급 고체산화물 연료전지의 1D 반응 모델 (1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell)

  • 잡반티엔;쿠엔;안국영;배용균;이선엽;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

$NH_3$-SCR 반응기 내에서의 $NH_3$/NOx 및 SCR 촉매 온도가 DeNOx 성능에 미치는 영향 (Effect of $NH_3$/NOx ratio and Catalyst Temperature on DeNOx Performance in the $NH_3$-SCR reactor)

  • 홍길화;공호정;황인구;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3096-3101
    • /
    • 2008
  • Selective Catalytic Reduction (SCR) technology is well-known to be effective for the reduction of NOx emission. So car manufacturers has adopted Ures-SCR system to be satisfied with emission regulation. This paper discusses the effective of $NH_3/NOx$ ratio and SCR catalyst temperature in the $NH_3$-SCR reactor on DeNOx performance. So it is shown the characteristic of NOx conversion and ammonia slip using the $NH_3$ instead of Urea-Solution. From the result of this study, it is found to optimize $NH_3/NOx$ ratio to have the best case of high NOx conversion and low ammonia slip at variable SCR catalyst temperatures. Lastly, it is also found the characteristics of NOx conversion and ammonia slip with compared with Urea.

  • PDF

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.