• 제목/요약/키워드: Ammonia/water solution

검색결과 128건 처리시간 0.024초

확산형 흡수식 냉장고에서 작동매체 충진조건이 증발온도에 미치는 영향 (Effects of Charging Conditions on Evaporating Temperature for Diffusion Absorption Refrigerator)

  • 김선창;김영률;백종현;박승상
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.828-834
    • /
    • 2003
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (hydrogen or helium). In this study, experimental investigations have been carried out to examine the effects of charging conditions of working fluids on the evaporating temperature for diffusion absorption refrigerator. Experimental parameters considered in the present experiments are charging concentration, solution charge and system pressure determined by auxiliary gas charged. As a result, in the charging condition of 35% of concentration and 20 kg$_{f}$cm$^2$ of system pressure, the system has the lowest evaporating temperature. It was found that there exists a minimum value of solution charge for the operation of diffusion absorption refrigerator.r.

Percolation 공정에서 참나무의 전처리에 과산화수소가 미치는 영향 (Effect of Hydrogen Peroxide on Pretreatment of Oakwood in a Percolation Process)

  • 하석중;김성배;박순철
    • KSBB Journal
    • /
    • 제14권3호
    • /
    • pp.358-364
    • /
    • 1999
  • 참나무의 전처리에 과산화수소가 미치는 영향을 조사하였다. 반응온도는 $170^{\circ}C$이고 전처리에 사용된 반응용액은 암모니아, 황산 그리고 순수 물이었다.10% 암모니아용액을 사용한 경우 산을 사용하는 경우에 비해 리그닌 제거율은 55%로 상당히 높았지만 헤미셀룰로오스 회수율은 26%로 상당히 낮았다. 그래서 헤미셀룰로오스 회수율을 높이기 위해 암모니아 용액에 산화제인 과산화수소를 첨가하여 반응시켰는데 과산화수소 첨가량의 증가에 따라 리그닌 제거율과 헤미셀룰로오스 회수율의 증가는 크지 않았다. 그리고 과산화수소 첨가량의 증가에 따라 액상으로 용해된 당의 분해가 증가하여 전체 헤미셀룰로오스와 셀룰로오스의 물질수지에 문제가 있었다. 반응기에 주입된 과산화수소는 주로 반응기의 전반부에 충진된 기질과 반응하는 것으로 나타났다. 헤미셀룰로오스 회수율을 높이기 위해서는 알카리용액보다 산성용액에서 기질을 전처리하는 것이 필요하였고 산보다는 물을 사용하였을 때 과산화수소의 효과가 더 컸다.

  • PDF

Enzyme Immobilized Reactor Design for Ammonia Removal from Waste Water

  • Song, Ju-Yeong;Chung, Soo-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제2권2호
    • /
    • pp.77-81
    • /
    • 1997
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of sutibal microorganisms could be sensible approach. Strains and permeabilized cell encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene films were prepared by the method described in the previous study. In the wastewater treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strains Nitrosomonas europaea(IFO14298), are permeabilized chemically, and immobilized on polystyrene films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. with 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule well was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.

  • PDF

Pt포일 양극을 이용한 전기화학적 암모니아 수전해 특성 연구 (Characterization of Electrochemical Ammonia Electrolysis Using a Platinum Electrode for Anodic Reaction)

  • 최정민;김학덕;송주헌
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.337-342
    • /
    • 2022
  • In this study, a water electrolysis was studied to investigate the effect of ammonia on current density and H2 gas production. A H type cell with three electrodes was used and KOH solution was used as electrolyte. The conventional platinum foil was used for working electrode, whereas nickel foam was used for counter electrode. CV experiment was performed to see the activity of ammonia oxidation reaction. In addition, CP experiment was done to examine the dependence of Faraday efficiency of hydrogen on current density and NH3 concentration. The CV result shows the 0.5M NH3 concentration required for highest current density and reliable operation. The CP result shows the increased current density leads to higher H2 generation. The higher H2 production and subsequent energy efficiency was observed for 0.5M NH3 using a Pt/13%Rh coil for a cathode as compared to those in water electrolysis.

나노 은 입자 세정법을 이용한 무기 악취물질의 제거 (Removal of Inorganic Odorous Compounds by Scrubbing Techniques using Silver Nano-particles)

  • 신승규;;송지현
    • 한국대기환경학회지
    • /
    • 제24권6호
    • /
    • pp.674-681
    • /
    • 2008
  • Silver as a metal catalyst has been used to remove odorous compounds. In this study, silver particles in nano sizes ($5{\sim}30nm$) were prepared on the surface of $NaHCO_3$, the supporting material, using a sputtering method. The silver nano-particles were dispersed by dissolving $Ag-NaHCO_3$ into water, and the dispersed silver nano-particles in the aqueous phase was applied to remove inorganic odor compounds, $NH_3$ and ${H_2}O$, in a scrubbing reactor. Since ammonia has high solubility, it was removed from the gas phase even by spraying water in the scrubber. However, the concentration of nitrate (${NO_3}^-$) ion increased only in the silver nano-particle solution, implying that the silver nano-particles oxidized ammonia. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (${SO_4}^{2-}$) ion increased with time due to the oxidation reaction by silver. As a result, the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts.

황산제일철과 암모니아수를 이용한 산화철 합성 (Synthesis of Iron Oxide Using Ferrous Sulfate and Ammonia Water)

  • 김삼중;엄태형;왕웨이;서동수
    • 한국재료학회지
    • /
    • 제18권4호
    • /
    • pp.218-221
    • /
    • 2008
  • A $Fe(OH)_2$ suspension was prepared by mixing iron sulfate and a weak alkali ammonia solution. Following this, iron oxides were synthesized by passing pure oxygen through the suspension (oxidation). The effects of different reaction temperatures ($30^{\circ}C$, $50^{\circ}C$, $70^{\circ}C$) and equivalent ratios ($0.1{\sim}10.0$) on the formation of iron oxides were investigated. An equilibrium phase diagram was established by quantitative phase analysis of the iron oxides using the Rietveld method. The equilibrium phase diagram showed a large difference from the equilibrium phase diagram of Kiyama when the equivalent ratio was above 1, and single $Fe_3O_4$ phase only formed above an equivalent ratio 2 at all reaction temperatures. Kiyama synthesized iron oxide using iron sulfate and a strong alkali NaOH solution.

암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향 (Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent)

  • 유정균;박호석;홍원희;박종기;김종남
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.258-263
    • /
    • 2007
  • 배가스 이산화탄소 처리를 위한 화학적 흡수공정의 새로운 흡수제로서 암모니아수의 적용 가능성을 고찰하였다. 이산화탄소 흡수용량과 침전 발생의 관점에서 적합한 암모니아수 흡수제 농도와 $CO_2$ 부하(loading, $molCO_2/molNH_3$)를 결정하였다. 이를 위하여 전해액에 대한 Pitzer 모델을 이용하여 암모니아 흡수제 농도에 따른 흡수용량과 침전 발생여부를 계산하였다. $5\;molNH_3/kgH_2O$ 이상의 암모니아수 흡수제를 사용하여 기존 아민류 흡수제 이상의 흡수용량은 얻을 수 있었다. 각 암모니아 흡수제 농도에서 $NH_4HCO_3$ 침전의 발생으로 인하여 조업이 제약되는 $CO_2$ 부하를 구하였다. $5{\sim}14\;molNH_3/kgH_2O$의 암모니아 흡수제는 293, 313 K에서 $CO_2$ 부하 0.5 이상에서 침전이 발행하였다. 침전 생성 $CO_2$ 부하값 이하로 흡수탑을 조업함으로써 고농도 암모니아 흡수제가 배가스 $CO_2$ 처리 공정에 사용될 수 있음을 알 수 있었다. 흡수용량과 침전발생을 고려하여 배가스 이산화탄소 처리를 위한 흡수제 최적온도는 암모니아수 농도에 따라 297~312 K이었다.

Electrochemical nitrate reduction using a cell divided by ion-exchange membrane

  • Lee, Jongkeun;Cha, Ho Young;Min, Kyung Jin;Cho, Jinwoo;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.189-194
    • /
    • 2018
  • Electrochemical reduction of nitrate was studied using Zn, Cu and (Ir+Ru)-Ti cathodes and Pt/Ti anode in a cell divided by an ion exchange membrane. During electrolysis, effects of the different cathode types on operating parameters (i.e., voltage, temperature and pH), nitrate removal efficiency and by-products (i.e., nitrite and ammonia) formation were investigated. Ammonia oxidation rate in the presence of NaCl was also determined using the different ratios of hypochlorous acid to ammonia. The operating parameter values were similar for all types of cathode materials and were maintained relatively constant. Nitrate was well reduced and converted mostly to ammonia using Zn and Cu cathodes. Ammonia, produced as a by-product of nitrate reduction, was oxidized in the presence of NaCl in the electrochemical process and the oxidation performance was enhanced upon increasing the hypochlorous acid-to-ammonia ratio to 1.09:1. Zn and Cu cathodes promoted the nitrate reduction to ammonia and the produced ammonia was finally removed from solution by reacting with hypochlorite ions. Using Zn or Cu cathodes, instead of noble metal cathodes, in the electrochemical process can be an alternative technology for nitrate-containing wastewater treatment.

암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구 (A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole)

  • 이재철;이기봉;전병희;이찬호;하종주;김성현
    • 청정기술
    • /
    • 제7권4호
    • /
    • pp.273-280
    • /
    • 2001
  • 흡수기는 흡수식 열펌프 시스템에서 중요한 구성요소일 뿐만 아니라 흡수기의 성능은 전체 시스템에 중요한 영향을 미친다. 본 연구에서는 기포분사형 흡수기에서의 암모니아기체의 흡수열의 효과적 제거를 위한 냉각수 방향으로의 열전달에 대해 실험적 연구를 수행하였다. 흡수기에 유입되는 암모니아 기체의 유속, 암모니아 수용액의 유속, 농도, 온도, 흡수기의 지름, 높이, 기체와 용액의 유입 방향등 여러 가지 변수에 대하여 열전달 성능의 특성을 살펴본 결과, 기체의 주입량, 용액의 주입량 증가는 열전달 성능 향상에 기여하며, 용액의 온도나 농도의 상승은 열전달 성능에 방해요소로 작용하였으며 흐름방향이 향류인 경우 열전달 성능에 향상이 있었다. 본 실험의 데이터를 이용하여 상관관계식을 유도하여 열전달에 대한 복잡한 관계를 일반화 하였다.

  • PDF

Preparation and Characterization of Peptizable Alumina

  • Lee, Chong-Mok;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권6호
    • /
    • pp.329-333
    • /
    • 1985
  • A procedure for the preparation of peptizable pseudoboehmite has been described in detail based upon a process of neutralization of an aqueous aluminum sulfate or chloride solution with aqueous ammonia. In order to obtain peptizable pseudoboehmite products, carefully controlled conditions were required in the whole processes of neutralization, aging, washing, and drying. The optimum conditions experimentally found are the following. The aluminum salt solution is neutralized with aqueous ammonia until the final pH of the solution reaches 10.0 to 10.8 or 9.0 to 9.3 for the sulfate of chloride, respectively. The alumina gel formed is subjected to aging at $80^{\circ}C for about 3 hours and washed with water more than 5 times to reduce the residual sulfate or chloride ion in the final products to less than 4%. The pseudoboehmite gel thus obtained should be dried oven at 80 to $100^{\circ}C for a few to several hours depending on the selected temperatures.