• Title/Summary/Keyword: Amino acid and sucrose transport

Search Result 4, Processing Time 0.019 seconds

Different Levels of N Supply Impacts on Seed Yield by Modulating C and N Metabolism in Brassica Napus

  • Lee, Bok-Rye;Lee, Hyo;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • Oilseed rape is known to crop having low nitrogen use efficiency (NUE) but requires high levels of N fertilizer. NUE is associated with N remobilization from source to sink organ, consequently affects seed yield. Remobilization of leaf N is also related to transport of C/N metabolites in phloem. However, interaction between seed yield and phloem transport was not fully documented. In response to seed yield, N and C metabolites and their transport into seed from bolting to pod filling stage investigated in two contrasting genotypes (Capitol and Pollen) cultivated under ample (HN) or limiting nitrate (LN) supply. Seed yield was significantly reduced in N limitation and its reduction rate was much lower in Capitol than in Pollen compared to HN treated plants. Amino acid and protein content was higher in Capitol than in Pollen at bolting stage. They gradually decreased during plant development but not significant between two cultivars and/or two treatments. Glucose, fructose and sucrose content were 1.8-,1.6- or 1.25-fold higher in LN condition than in HN condition, respectively. Amino acid and sucrose content in phloem were largely higher in Capitol than in Pollen under LN condition. These results indicate that the higher seed yield might be related to greater transport ability of amino acid and sucrose in phloem under LN condition.

Characterization of the scr Gene Cluster Involved! in Sucrose Utilization in Bifidobacterium longum (Bifidobacterium longum의 Sucrose 대사 관련 scr 유전자군의 특성 규명)

  • 권태연;이종훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2004
  • The nucleotide sequence of 8.6-kb EcoRI fragment containing sucrose phosphorylase gene isolated from Bifidobacterium longum SJ32 was determined. It was found that the fragment contained five open reading frames including the gene cluster for sucrose utilization such as a sucrose phosphorylase (ScrP), a sucrose transporter (ScrT), and a GalR-LacI-type transcriptional regulator (ScrR) identified by amino acid homology. Each gene showed over 94% amino acid homology among various B. longum strains. Genomic organization of the gene cluster is the same as those of other strains of B. longum but different from that of B. lactis. In spite of high homology of each gene among B. longum strains, the difference of flanking sequences of the gene cluster between strains SJ32 and NCC2705 insinuates the horizontal transfer of scrPTR between B. longum strains. The increase of sucrose phosphorylase activity in heterologous E. coli system by the co-expression of scrT with scrP against the single expression of scrP was measured. It seems to be the result of sucrose uptake increment by scrT in the host and is an indirect evidence that scrT is the gene for sucrose transport. The existence of multiple sucrose uptake systems in B. longum is supposed from the findings of several genes besides scrPTR involved in sucrose uptake in the genome of B. longum NCC2705.

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

Responses of Tobacco Photomixotrophic Cultured Cells to Various Herbicides (다양한 제초제에 대한 담배 Photomixotrophic 배양세포의 반응)

  • 권혜경;권석윤;이행순;윤의수;김진석;조광연;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.183-187
    • /
    • 1999
  • To establish an efficient screening system for new herbicides using plant cultured cells, responses of tobacco photomixotrophic cultured (PH) cells to various herbicides with different modes of action were surveyed by measuring the cell growth and ion conductivity in medium. The cells were cultured in Murashige and Skoog (MS) medium containing 0.7mg/L 2,4-D, 0.3mg/L kinetin and 30 g/L sucrose at $25^{\circ}C$ in the light (100 rpm). Chemicals were treated to suspension cultures of tobacco PH cells at the time of subculture. The cell growth and ion conductivity in the medium were investigated on 12 days after chemical treatment. The ion conductivity assay gave well correlated results to the cell growth inhibition data. The responses of tobacco PM cells were dependent on the modes of action of chemicals tested. Atrazine, an inhibitor of photosynthetic electron transport (PET), strongly inhibited both the cell membrane and cell growth ($IC_{50}$/, about 1 $\mu$M). Butachlor (an inhibitor of cell division), glufosinate (an inhibitor of amino acid biosynthesis), and fluridone (an inhibitor of carotenoid biosynthesis) showed a dose-dependent inhibition. However, Quinclorac, a herbicide with an auxin activity, did not affect the cell growth and ion leakage. These results suggested that tobacco PM cells is suitable materials for the simple screening of new herbicides such as PET, amino acid biosynthesis, ceil division inhibitors by measuring the cell growth and ion conductivity.

  • PDF