• Title/Summary/Keyword: Amino Acid Transport

Search Result 130, Processing Time 0.035 seconds

Transport of Sulfanilic Acid via Microbial Dipeptide Transport System

  • Hwang, Se-Young;Ki, Mi-Ran;Cho, Suk-Young;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.315-318
    • /
    • 1995
  • Sulfanilic acid (4-aminobenzenesulfonic acid) alone is normally not permeant in bacteria but can be readily delivered via the microbial dipeptide transport system. A dipeptidyl derivative of this compound, L-phenylalanyl-L-2-sulfanilylglycine (PSG), prepared by attachment of its primary amino group to the phenylalanyl $\alpha$-glycine moiety, appeared to have a Km of 0.125 mM and a Vmax of 1.9 nmoles/ml/min ($A_{660}$, 1.0) in Escherichia coli. From competitive spectrophotometric analysis, it was found that the type of amino acids in both of the N- and C-terminals affected the kinetic power of dipeptides. The growth inhibitory effect of PSG was over 7 times more potent than that of the sulfanilic acid against E. coli, suggesting that this potential inhibition was presumably due to the increased hydrophobic nature of the sulfanilyl dipeptide.

  • PDF

Active Transport of Acidic Amino Acids in Suspension Cultured Brassica sp. Cells (배추과 식물현탁배양 세포내에서 산성 아미노산의 능동수송)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.137-142
    • /
    • 1995
  • The acidic amino acids, aspartate and glutamate, which have a negative charge in physiological pH, possess the same transport system as neutral amino acids according to the competitive inhibitory studies with the neutral amino acids. The neutral amino acids cotransported with one H+ per molecule, and one K+efflux per one molecule for charge compensation (Cho,1994), but the acidic amino acids cotransported with two H+ per one molecule, and one K+ efflux per one molecule. The active transport system, which possess the same carrier but cotransported with the different number of H+, reported for the first time. from the results, we can see that one of cotransported H+ protonated at first carboxyl group of pK$_3$ of acidic amino acids, and then as a neutral form cotransported with H+ Therefore, Brassica possess two amino acids transport system for 20 amino acids, namely general - and basic amino acids transport system. The evolutionary meaning of amino acid carriers described with other reported plants.

  • PDF

Sugar and Amino Acid Transport in Yeast (효모세포의 당과 아미노산의 운반에 관한 연구 II)

  • 민경희;권영명
    • Korean Journal of Microbiology
    • /
    • v.16 no.4
    • /
    • pp.148-154
    • /
    • 1978
  • Saccharomyces cerevisiae J170, a mutant, was used for $DL-^{14}C-leucine$ uptake during the sporulation and vegetative stage. $^{14}C-Leucine$ uptake into yeast cells appeared the highest at pH 6.0, indicating the same result of glucose transport, $^{14}C-Leucine$ uptake in sporulation period was higher than in growth phase, showing the evidence that leucine is more required for protein synthesis. This tendency has the evidence tht leucine is more required for protein synthesis. This tendency has the evidence that leucine is more required for protein synthesis. This tendency has been also supported from the result of Km values of leucine uptake in two stages of yeast. Leucine uptake was inhibited by 2,4-dinitrophenol in two stages of yeast. This means that leucine transport system is associated with energy dependent in both stages. The contents of all amino acid in growth phase cells were higher than those of sporulation stge cells, and those of methionine and tyrosine were showed in trace during the sporulation stage. In contrast, the content of glutamic acid in sporulation stage was compared with those of other amino acids.

  • PDF

Characterization of Absorption Process of Taurine Across Rat Small Intestine

  • Kim, Kyung-Soon
    • Archives of Pharmacal Research
    • /
    • v.6 no.2
    • /
    • pp.109-114
    • /
    • 1983
  • A mechanism of taurine transfer across the rat small intestine was elucidated by using the in situ recirculation perfusion or loop method. Taurine uptake was saturable, Km= 39.9 mM, and energy dependent, and required sodium. The close structural analogues, aminomethane sulfonic acid, .gamma.-amino-butyric acid, hypotaurine, and .betha.-alanine, reduced significantly taurine uptake when present in 10-fold excess. The .alpha.-amino acid, glycine, did not inhibit uptake. Hence, all of these findings lead to a conclusion that a carrier-mediated transport system for taurine exists in the small intestine.

  • PDF

Amino Acid Imbalance-Biochemical Mechanism and Nutritional Aspects

  • Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1361-1368
    • /
    • 2006
  • Amino acid imbalances refer to the deleterious effects that occur when a second-limiting amino acid or mixture of amino acid lacking a particular limiting amino acid is supplemented in diets marginal in one or more indispensable amino acids. In spite of variation in the conditions that have been used to induce amino acid imbalances, such as protein level in the diet, the extent of difference in total nitrogen content between basal and imbalanced diets, and kinds of amino acids used as imbalancing agents, the conspicuous common features of amino acid imbalances have been a decreased concentration of the limiting amino acid in blood, depression of feed intake and weight gain, and increased dietary content of the limiting amino acid needed to correct the imbalances. There is strong evidence that a decrease in the concentration of a limiting amino acid detected in the anterior prepyriform cortex of the brain is followed by behavioral effects, especially a decrease in feed intake. This might be due to the competition between the limiting amino acid and the amino acids in the imbalancing mixture for transport from blood into brain. One of the biochemical responses of animals fed amino acid imbalanced diets is a rapid decrease in the concentration of the limiting amino acid, which are due in part to an increase in catabolism of the limiting amino acid by the increased activities of enzymes involved in the catabolism of the amino acid. Practically, specific amino acid imbalances could be induced in swine and poultry diets that have been supplemented with lysine, methionine, tryptophan when threonine, isoleucine, valine, etc. are potentially third- or fourth-limiting in diets. In these cases supplementation of the limiting amino acid could be beneficial in preventing the decrease of feed intake that could otherwise occur as a result of amino acid imbalance.

Effect of renal ischemia on amino acid transport in rabbit renal cortical slices (신장 허혈이 토끼 신피질 절편에서 아미노산 이동에 미치는 영향)

  • Nam, Yun-jeong;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.111-117
    • /
    • 1997
  • This study was carried out determine the effect of renal ischemia on amino acid transport in rabbit renal cortical slices. The animal models of renal ischemia induced experimentally by clamping the renal artery. These results were summarized as follows: 1. The uptake of amino acids lysine and ${\alpha}$-aminobutyrate(AIB), dicarboxylate succinate and organic anion PAH in cortical slices was normal or increased after 30 or 60 min of ischemia in vivo. 2. In a 30 min ischemic kidney, the slice uptake of amino acids was returned to the control level by 30 min of reflow. In a 60 or 90 min ischemic kidney, the lysine uptake was returned to the control level after of reflow, but the uptake of AIB and succinate was significantly reduced during reflow period of 30-120 min. 3. Oxygen consumption in cortical slices was increased after 30 min of ischemia but was not altered by 60 min of ischemia. This results indicat that transient ischemia caused increasing of amino acid uptake in renal cortical slices without metabolic disorder of renal proximal tubule.

  • PDF

Effects of Epidermal Growth Factor and Insulin-like Growth Factor-I on Placental Amino Acids Transport Activities in Rats

  • Ono, Kenichiro
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.34-36
    • /
    • 2002
  • Epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) have been shown to stimulate proliferation and differentiation of various somatic cells, including placental trophoblasts and also to enhance fetal growth and development when maternally administered. Since an increase of the expression of placental EGF and IGF-I receptors in rat, mouse, and human with the gestation advanced, both EGF and IGF-I were considered to play pivotal roles on fetal growth by regulating some function of placental cells. Amino acids are crucial importance for both maternal and fetal requirements of energy source and essential constituent of fetal mass during pregnancy. Impaired fetal and placental uptake of amino acids has been observed in several models of growth retardation in the rat. Amino acid is concentrated in the fetal side through active transport by amino acid transporters and is one of the important metabolic fuels for the fatal growth. Therefore, at first plasma amino acid concentrations in mothers and fetuses were measured as an index of uphill transport across the placenta associated with EGF and IGF-1. The EGF administration at the concentration of 0, 0.1, or 0.2 $\mu\textrm{g}$/g to pregnant rats from day 18 to 21 of gestation apparently increased fetal/maternal ratio of serum proline concentration and also fatal growth in EGF dose-dependent manner. When IGF-I in doses of 0, 1, 2, and 4 $\mu\textrm{g}$/g were administrated, the ratio of leucine, isoleucine, tryptophan, phenylalanine, tyrosine and also fetal growth significantly increased with a dose-dependent manner. These results suggested that EGF and IGF-I enhanced fatal growth by, as one of its possible mechanisms, promoting placental activity to transfer some amino acid supplies from the mother to the fetus in late pregnancy.

  • PDF

Drug Delivery into the Blood-Brain Barrier by Endogenous Substances-A Role of Amine and Monocarboxylic Acid Carrier Systems for the Drug Transport- (내인성물질의 수송계를 이용한 혈액-뇌관문에의 약물송달V-약물의 혈액-뇌관문 투과성에 대한 염기성 아민 및 모노카르본산 수송계의 역할-)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.4
    • /
    • pp.223-228
    • /
    • 1990
  • The contribution of endogenous transport systems to the blood-brain barrier (BBB) transport of basic and acidic drugs was studied by using a carotid injection technique in rats and an isolated bovine cerebrovascular disease state were compared between the normotensive rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) which have been well established as an animal model with pathogenic similarities to humans. Basic drugs such as eperisone, thiamine and scopolamine inhibited, in a concentration dependent manner the in vivo uptake of $[{^3}H]choline$ through BBB, whereas amino acids and acidic drugs such as salicylic acid and valproic acid did not inhibit the uptake. The uptake of $[^3H]choline$ by B-CAP increased with time and showed a remarkable temperature dependency. The uptake of $[^3H]choline$ by B-CAP showed the very similar inhibitory effects as observed in the in vivo brain uptake, and was competitively inhibited by a basic drug, eperisone. The in vivo BBB uptakes of $[^3H]acetic$ acid and $[^{14}C]salicylic$ acid were dependent on pH of the injectate and the concentration of drugs. Several acidic drugs such such as salicylic acid, benzoic acid and valproic acid inhibited the in vivo uptake of $[^3H]acetic$ acid, whereas amino acid, choline and a basic drug such as eperisone did not inhibit the uptake. The uptake of acetic acid by B-CAP was competitively inhibited by salicylic acid. The permeability surface area product (PS) through BBB for $[^3H]choline$ in SHRSP was significantly lower than that in WKY. The concentration of choline in the brain dialysate in SHRSP was about half of that in WKY, while no significant difference was observed in the plasma concentration of choline between SHRSP and WKY. No significant difference was observed in the transport of monocarboxylic acids, glucose and neutral amino acid through BBB between SHRSP and WKY. From these results, it was concluded that BBB transport system of choline contributes to the transport of basic drugs through BBB, that acidic drugs can be transported via a moncarboxylic acid BBB transport system and that the specific dysfuntion of the BBB choline transport in SHRSP was ascribed to the reduction of the maximum velocity of choline concentration in the brain interstitial fluids.

  • PDF

Different Levels of N Supply Impacts on Seed Yield by Modulating C and N Metabolism in Brassica Napus

  • Lee, Bok-Rye;Lee, Hyo;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • Oilseed rape is known to crop having low nitrogen use efficiency (NUE) but requires high levels of N fertilizer. NUE is associated with N remobilization from source to sink organ, consequently affects seed yield. Remobilization of leaf N is also related to transport of C/N metabolites in phloem. However, interaction between seed yield and phloem transport was not fully documented. In response to seed yield, N and C metabolites and their transport into seed from bolting to pod filling stage investigated in two contrasting genotypes (Capitol and Pollen) cultivated under ample (HN) or limiting nitrate (LN) supply. Seed yield was significantly reduced in N limitation and its reduction rate was much lower in Capitol than in Pollen compared to HN treated plants. Amino acid and protein content was higher in Capitol than in Pollen at bolting stage. They gradually decreased during plant development but not significant between two cultivars and/or two treatments. Glucose, fructose and sucrose content were 1.8-,1.6- or 1.25-fold higher in LN condition than in HN condition, respectively. Amino acid and sucrose content in phloem were largely higher in Capitol than in Pollen under LN condition. These results indicate that the higher seed yield might be related to greater transport ability of amino acid and sucrose in phloem under LN condition.