• 제목/요약/키워드: Amino Acid Supplementation

검색결과 223건 처리시간 0.033초

The Effect of Silk Amino Acid Supplementation on the Level of Blood Energy Substrates and Hormones during Prolonged Exercise

  • Zhang Seok-Am;Lee Nam-Hee;Kim Yong-Hwan
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2004년도 Annual Meeting and International Symposium
    • /
    • pp.171-184
    • /
    • 2004
  • The silk amino acid supplementation is unknown to affect the release of several hormones related to energy production and metabolism during prolonged exercise. This study examined the effects of silk amino acid supplementation on the level of blood amino acid, energy substrates and hormones level during prolonged treadmill exercise in college taekwondo player. A prolonged treadmill test was carried out 60 min at 65% of maximal heart rate on 8 athletics. Blood samples were obtained form antecubital vein of subjects at rest bed 30 minute before test, after exercise and rest 1 hour. The subjects were supplemented silk amino acid (6,390 mg/day) fur 4 week. The silk amino acid supplementation did not produce significant changes on the levels of blood lactate, ammonia, amino acid, glucose, triglyceride, total cholesterol, HDL, LDL, seratonin and leptin at rest bed 30 minute before test, after exercise and rest 30 minute. The silk amino acid 4 week supplementation did not affect the levels of blood amino acid, energy substrates and hormones during prolonged treadmill exercise.

  • PDF

식이내의 타우린 또는 글라이신 보강이 흰쥐의 혈장과 간의 유리아미노산 농도 및 패턴에 미치는 영향 (Effect of Dietary Taurine or Glycine Supplementation on Plasma and Liver Free Amino Acid Concentrations in Rats)

  • 박정은
    • Journal of Nutrition and Health
    • /
    • 제31권2호
    • /
    • pp.126-134
    • /
    • 1998
  • Our previous study demonstrated that dietary taurine or glycine supplementation significantly lowered plasma and hepatic cholesterol and triglyceride concentrations in rats fed a cholesterol-free diet. In the present study, the effect of long term dietary taurine or glycine supplementation, for the purpose of preventing and/or treating of hyperlipidemia and other known biological functions, on plasma and hepatic free amino acid concentrations and profiles were evaluated in rats. Three groups of male rats(110-130g) were fed a control diet(CD), taurine-supplemented diets(TSD ; CD+ 1.5% taurine) or glycine-supplemented diet(GSD ; CD+1.5% glycine) for 5 weeks. Plasma and hepatic free amino acid concentrations were determined by an automated amino acid analyzer based on ion-exchange chormatography. The feeding of TSD for 5 weeks yielded a 444% higher plasma taurine concentration , and the feeding GSD for the same period resulted in a 143% higher plasma glycine level in rats compared to those fed DB. Hepatic taurine concentration was significantly higher in rats fed TSD(145% increase) compared to the control rats. However, hepatic glycine concentration was not influenced by dietary glycine supplementation , which implies that the massive dose of glycine entering the body was more rapidly metabolized or excreted than taurein. Dietary taurine or glycine supplementation resulted in similar changes in plasma free amino acid concentrations, except in levels of taurine and glycine. Plasma levels of histidine, lysine, phenylalanine , alanine, proline, hydroxypoline, $\alpha$-aminogutyric acid, cystathionine and ethanolamine were significantly higher in rats fed TSD or GSD than those fed GD. Glycine supplementation did not change hepatic free amino acid concentrations as compared to CD. Concentrations of most hepatic free amino acids were not influenced by dietary taurine supplementation with the exception of significantly higher levels of asparate and tyrosine(56-63% increase) and lower levels of histidine and glutamate(33-34% decrease) compared to the control rats. These results suggest long-term dietary taurine or glycine supplementation resulted in increases in most plasma free amino acid levels, but did not cause a characteristic change in plasma aminogram pattern compared to rats fed CD.

  • PDF

타우린복용이 정상 성인여성의 혈장 유리아미노산 농도 및 소변내 배설에 미치는 영향 (Effects of Oral Taurine Supplementation on Plasma Concentration and Urinary Excretion of Free Amino Acids in Healthy Female Adults)

  • 차희숙
    • Journal of Nutrition and Health
    • /
    • 제32권2호
    • /
    • pp.158-165
    • /
    • 1999
  • Effects of oral taurine supplementation (6g/day) on plasma concentration and urinary of free amino acids were evaluated in healthy female adults. Among twenty five female volunteers(23.6$\pm$0.3 years old) participated in the taurine supplementation program, twenty four subjects successfully completed the two supplementation program. Plasma and urinary levels of free amino acids were determined by using an automated amino acid analyzer based on ion-exchange chromatography. Two weeks of taurine supplementation resulted in a 65% increase in plasma taurine concentration (p<0.001), Changes in fasting plasma amino acid concentrations followed by taurine supplementation were not spectacular, and were all within the normal range for human aldults. Taurine supplementation significantly elevated urinary methionine, asparagine, hydorxyproline and phosphoserine excretions(31~280%), and significantly decreased the urinary excretions of isoleucine, glutamate and serine compared to the values prior to taurine supplementation. For almost every individual amino acids, 24 hr urinary excretion level was significantly correlated to the urinary excretion value expressed as nmol/mg creatinine(p<0.001). A significant negative correlation found between plasma glutamine concentration and urinary glutamine excretion level suggests that the decrease in plasma glutamine concentration might be associated with the enhanced glutamine excretion in urine followed by taurine supplementation.

  • PDF

Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

  • Torrentera, Noemi;Carrasco, Ramses;Salinas-Chavira, Jaime;Plascencia, Alejandro;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.42-50
    • /
    • 2017
  • Objective: Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods: Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves ($127{\pm}4.9kg$) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results: During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated ($R^2=0.95$) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, $p{\leq}0.05$) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no treatment effects on flow of dietary and microbial N to the small intestine. Postruminal N digestion increased (p = 0.04) with increasing level of supplemental methionine. Methionine supplementation linearly increased (p<0.01) duodenal flow of methionine. Likewise, lysine supplementation increased an average of 4.6% (p = 0.04) duodenal flow of lysine. In steers that received non-supplemented diet, observed intestinal amino acid supply were in good agreement with expected. Conclusion: We conclude that addition of rumen-protected methionine and lysine to diets may enhance gain efficiency and dietary energetics of growing Holstein calves. Observed amino acid supply to the small intestine were in good agreement with expected, supportive of NRC (2000, Level 1).

비알콜성 간경변증 환자에서 영양보충에 따른 영양개선의 효과 (Effects of Nutritional Supplementation on Nutirtional Status in Patients with Nonalcoholic Liver Cirrhosis)

  • 안수현;김오연;이종호;김지영;한광협
    • Journal of Nutrition and Health
    • /
    • 제36권6호
    • /
    • pp.577-588
    • /
    • 2003
  • Severe protein-calorie malnutrition, common in patients with advanced liver disease, can seriously undermine the capacity for regeneration and functional restoration of liver. Nutritional supplementation for these patients can improve biochemical and hormonal abnormalities. However, these effects were not identified in patient with nonalcoholic liver cirrhosis. To determine effects of nutritional supplementation in patients with nonalcoholic liver cirrhosis, 77 subjects aged 29 to 69 years participated in this study for 12 weeks and were subdivided into three groups; normal diet group (Control group, n = 16), branched-chain amino acid supplementation group (BCAA group, n = 31), nutritional supplementation group (NS group, n = 30). Anthropometric parameters, hemoglobin, hematocrit, blood cell counts, serum levels of lipids, vitamins, minerals and fatty acid composition, and plasma amino acids were examined. The mean values of age and height, and the initial values of weight and body mass index (BMI) were not different among all groups. After 12 weeks, there were no significant changes in these values in Control group. Only NS group showed significant increases in weight, lean body mass, midarm circumference, triceps skinfold thickness. Serum transferrins were increased both in BCAA and NS groups. Plasma levels of branched-chain amino acids, urea amino acids and glutamic acid were also significantly increased in these groups, but plasma levels of ammonia, serum LDL cholesterol and atherogenic index were decreased. However, there were no significant changes in serum levels of vitamin and mineral and composition of fatty acids in phospholipids in these groups. These results showed that the nutritional supplementation for patients with nonalcoholic liver cirrhosis can more improve nutritional status in these people together with increases of weight, body fat and lean body mass, compared to only BCAA supplementation. To ascertain and investigate the appropriate nutritional supplementation for patients with nonalcoholic liver cirrhosis, further studies are necessary.

The Role of Synthetic Amino Acids in Monogastric Animal Production - Review -

  • Han, In K.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권4호
    • /
    • pp.543-560
    • /
    • 2000
  • The present paper gives a general overview on amino acid nutrition mainly focused on the concept of ideal protein and amino acid requirements in swine and poultry. Also, the nutritional, economic and environmental roles of synthetic amino acids are presented. A special emphasis has been given to the protein sparing effect by the supplementation of synthetic amino acids into diet and to the effect of this supplementation on growth performance and reduction of environmental pollutants in swine and poultry manure. It is concluded that the supplementation of limited amounts of synthetic amino acids (0.1 to 0.3%) to diets for swine and poultry could spare 2 to 3 percentage units of dietary protein and substantially reduce nutrient excretion, especially nitrogen. Immunocompetency as affected by amino acid nutrition is also introduced and the importance of threonine for the synthesis of immunoproteins in colostrum and milk to maintain piglets' health and intestinal integrity has been emphasized. Finally, some speculation on the future of global amino acids market is presented in conclusion.

Effects of dietary spermine supplementation on cell cycle, apoptosis, and amino acid transporters of the thymus and spleen in piglets

  • Cao, Wei;Wu, Xianjian;Jia, Gang;Zhao, Hua;Chen, Xiaoling;Wu, Caimei;Cai, Jingyi;Wang, Jing;Liu, Guangmang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1325-1335
    • /
    • 2018
  • Objective: This study investigated whether spermine supplementation could regulate cell cycle, apoptosis, and amino acid transporter-related genes expression in the thymus and spleen of early weaned piglets. Methods: Eighty female piglets were randomly distributed to receive adequate nutrients supplemented with spermine (0.4 mmol/kg body weight/24 h) or to be provided with restricted nourishment supplemented with normal saline for 7 h or 3, 6, or 9 d in pairs. Results: Regardless of administration time, spermine supplementation significantly up-regulated cyclin A2 gene expression but down-regulated p21 and cyclin D3 mRNA levels in the thymus and spleen and reduced cyclin E2 gene expression in the thymus of piglets (p<0.05). Irrespective of the treatment period, the reduced Bax and caspase-3 gene expressions and improved Bcl-2 mRNA level were observed in the thymus and spleen of spermine-administrated piglets (p<0.05). Regardless of supplementation time, spermine intake significantly enhanced the expressions of amino acid transporter-related genes (SLC1A1, SLC1A5, SLC7A1, SLC7A7, and SLC15A1) in both thymus and spleen, as well as SLC7A9 in the spleen of piglets (p<0.05). In addition, extended spermine administration also markedly promoted cell proliferation, depressed apoptosis and modulated amino acid transport (p<0.05), and such effects were the greatest during prolonged spermine supplementation (6 d) compared to the other time periods (p<0.05). Conclusion: Spermine supplementation may regulate cell cycle during the G1/S phase, suppress apoptosis and modulate amino acid transport. A period of 6 d of spermine supplementation is required to produce the optimal effects on nutritional implications.

Effects of Feeding Betaine on Performance and Hormonal Secretion in Laying Hens

  • Park, Jae-Hong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2006년도 제23차 정기총회 및 학술발표회
    • /
    • pp.17-27
    • /
    • 2006
  • The effects of dietary betaine on performance, blood compositions, hepatic amino acid concentrations and hormonal secretions were examined in laying hens. Egg production was significantly higher in birds fed the 16.5 % protein diet compared to those fed 14.5 % protein diet(p<0.05), whereas dietary supplementation of betaine did not show any significant effect. The high level of protein and betaine supplementation significantly improved egg weight, egg mass and feed conversion(p<0.05), while eggshell breaking strength, eggshell thickness and Haugh unit were not influenced by betaine and dietary protein levels. Supplemental betaine did not affect serum total protein, albumin and BUN concentration. However, uric acid concentration significantly increased in 600 ppm betaine-fed groups(p<0.05). Concentrations of most hepatic amino acid were influenced by increased protein feeding and dietary betaine supplementation. Hormone studies recorded significantly higher serum and hepatocyte IGF-I concentration in 600 and 1,200 ppm betaine treatments(p<0.05) compared to those of control group. IGF-I mRNA gene expression of hepatocytes revealed statistically correlated increase in 600 and 1,200 ppm betaine-fed groups compared to the controls(p<0.05). Serum IGFBP-3 concentration was significantly elevated in 600 ppm betaine treatments. However, the secretion of IGFBP-1 in hepatocyte of laying hens fed with 600 and 1,200 ppm of betaine showed a significant decrease compared to the control group(p<0.05). Results of these study show that dietary betaine supplementation affects protein and hormone metabolism in laying hens.

  • PDF

Evaluation of Fishmeal Supplement with Net Nitrogen Flux by the Portal-drained Viscera and the Liver in Mature Sheep

  • Fukuma, T.;Taniguchi, K.;Obitsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권9호
    • /
    • pp.1255-1261
    • /
    • 2005
  • The objective of this study was to evaluate the net flux response of nitrogen compounds (alpha-amino N, ammonia N, urea N, essential amino acids) across the portal-drained viscera (PDV), liver and total splanchnic tissues of mature wethers to increasing level of dietary fishmeal (FM) supplementation. Four wethers (average body weight, 64 kg) with chronic indwelling catheters into the portal, hepatic and mesenteric veins and the abdominal aorta were used in a 4${\times}$4 Latin square design. A basal diet consisting of 0.7 hay and 0.3 concentrate was fed twice daily with a fixed amount at 1.4 times maintenance energy (1.3 kg/day on a dry matter basis). The supplementation proportion of FM as treatment was 0, 0.03, 0.06 and 0.09 to the amount of the basal diet to contain 119, 137, 154 and 170 g crude protein per kg dietary dry matter, respectively. Blood flows through PDV and liver did not differ (p>0.05) among the treatments. Both net PDV release and hepatic uptake of alpha amino acid N increased linearly (p<0.05) in response to increased dietary FM, which resulted in similar total splanchnic release of alpha-amino N among the treatments. Similarly, increased dietary FM increased net PDV absorption and hepatic removal of ammonia N linearly (p<0.05). Hepatic synthesis and total splanchnic release of urea N increased linearly (p<0.01) with increased dietary FM, but PDV uptake of urea N did not respond to increased dietary FM. Linear regression equations between the increases in FM N intake and PDV net flux indicated that 0.34 and 0.30 of FM N was absorbed in the form of alpha-amino N and ammonia N, respectively. The results demonstrated that FM supplementation provides more alpha-amino N than ammonia N to the liver, but the alpha-amino acid N absorption is less than the expected metabolizable protein N from FM supplementation.

Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts

  • Zhou, Dongjie;Li, Xiao-Han;Lee, Song‑Hee;Heo, Geun;Cui, Xiang-Shun
    • 한국동물생명공학회지
    • /
    • 제37권1호
    • /
    • pp.17-26
    • /
    • 2022
  • Alpha-linolenic acid is an important polyunsaturated fatty acid that exhibits anticancer, anti-inflammatory, and antioxidative effects. In this study, we investigated the protective effects of alpha-linolenic acid on the cell proliferation and differentiation of C2C12 cells under essential amino acid-deficient conditions. Different concentrations of alpha-linolenic acid and essential amino acids were added to the growth and differentiation media. The concentrations of 10 µM of alpha-linolenic acid and 2% essential amino acid were chosen for subsequent experiments. Supplementation with alpha-linolenic acid and essential amino acids improved the proliferation and differentiation of C2C12 cells and significantly increased the mRNA levels of catalase, superoxide dismutase, B-cell lymphoma-2, and beclin-1 as well as the protein levels of PPARγ coactivator-1α compared to those in the controls. Moreover, supplementation with alpha-linolenic acid and essential amino acids reduced the levels of phosphorylated H2A.X variant histone, Bcl-2-associated X, p53, and light chain 3 during C2C12 cell proliferation, and increased the expression levels of myogenic factors 4 (myogenin) and 5 during C2C12 cell differentiation. Overall, we determined that alpha-linolenic acid and essential amino acids maintained the cell proliferation and differentiation of C2C12 cells via their anti-oxidative, anti-apoptotic, and anti-autophagic effects.