• Title/Summary/Keyword: Ambient monitoring

Search Result 392, Processing Time 0.023 seconds

Measurements of the Temperature Coefficient of Resistance of CVD-Grown Graphene Coated with PEI (PEI가 코팅된 CVD 그래핀의 저항 온도 계수 측정)

  • Soomook Lim;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.342-348
    • /
    • 2023
  • There has been increasing demand for real-time monitoring of body and ambient temperatures using wearable devices. Graphene-based thermistors have been developed for high-performance flexible temperature sensors. In this study, the temperature coefficient of resistance (TCR) of monolayer graphene was controlled by coating polyethylenimine (PEI) on graphene surfaces to enhance its temperature-sensing performances. Monolayer graphene grown by chemical vapor deposition (CVD) was wet-transferred onto a target substrate. To facilitate the interfacial doping by PEI, the hydrophobic graphene surface was altered to be hydrophilic by oxygen plasma treatments while minimizing defect generation. The effect of PEI doping on graphene was confirmed using a back-gated field-effect transistor (FET). The CVD-grown monolayer graphene coated with PEI exhibited an improved TCR of -0.49(±0.03) %/K in a temperature range of 30~50℃.

The Exceedance Patterns of O3 Air Quality Standards from 31 Monitoring Stations in Seoul (오존의 환경기준 초과양상에 대한 연구)

  • Kim, Min-Young;Choi, Ye-Jin;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.683-696
    • /
    • 2002
  • In this work. we investigated the ozone data sets that exceeded ambient air quality standards from 31 air quality monitoring stations dispersed across the Seoul metropolitan city during the period covering 1990 and 2000. To specifically describe spatial dependency of high level O$_3$ occurrence, we grouped our data into four different geographical ozone exceedance is much longer in SW than the other three sectors. When we compared the exceedance data in terms of occurrence frequency, the month of maximum frequency differed slightly among different sectors. Examination of long-term exceedance trend indicated that its frequency increased continuously from all sectors over the past years, although slightly opposite patterns existed in their absolute values. Most importantly, its peak occurrence frequency seemed to center in very recent years such as 1998 (NE sector) and 2000 (ail pattern sectors except NE). Consequently, we were able to describe the existence of certain patterns of ozone exceedance data sets in terms of both temporal and spatial scales.

Comparison of Ambient Real-Time PM2.5 Concentrations at Major Roadside with on those at Adjacent Residential Sites in Seoul Metropolitan City (서울시 도로변지역과 인근 주거 밀집지역의 실시간 대기 중 PM2.5농도 비교)

  • Yun, Dongmin;Kim, Bokyeong;Lee, Dongjae;Lee, Seonyeob;Kim, Sungroul
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.875-882
    • /
    • 2015
  • In 2013, International Agency for Research on Cancer (IARC) concluded that outdoor air pollution is carcinogenic to humans, with the particulate matter component of air pollution most closely associated with sufficient evidence of increased cancer incidence by exposure to particulate matter component of air pollution. Motor vehicles are one of a major emission sources of fine particle ($PM_{2.5}$) in urban areas. A large number of epidemiological studies have reported a positive association of morbidity or mortality with distance from the roadside. We conducted this study to assess the association of $PM_{2.5}$ concentrations measured at roadside hotspots with those at adjacent residential sites using real-time $PM_{2.5}$ monitors. We conducted real-time $PM_{2.5}$ measurements for rush hour periods (08:00~10:00 and 18:00~20:00) at 9 roadside air monitoring Hotspot sites in metropolitan Seoul over 3 weeks from October 1 to 21, 2013. Simultaneous measurements were conducted in residential sites within a 100 m radius from each roadside air monitoring site. A SidePak AM510 was used for the real-time $PM_{2.5}$ measurements. Medians of roadside $PM_{2.5}$ concentrations ranged from $9.8{\mu}g/m^3$ to $38.3{\mu}g/m^3$, while corresponding median values at adjacent residential sites ranged from $4.4{\mu}g/m^3$ to $37.3{\mu}g/m^3$. $PM_{2.5}$ concentrations of residential sites were 0.97 times of hotspot roadside sites. Distributions of $PM_{2.5}$ concentrations in roadside and residential areas were also very similar. Real-time $PM_{2.5}$ concentrations at residential sites, (100 m adjacent), showed similar levels to those at roadside sites. Increasing the distance between roadside and residential sites, if needed, should be considered to protect urban resident populations from $PM_{2.5}$ emitted by traffic related sources.

Monitoring of Microbial Contaminants in Processing Line of Some Mushromm Canneries (양송이 통조림 공장의 미생물 오염도 변화 추적)

  • 신동화;홍재식
    • Journal of Food Hygiene and Safety
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 1989
  • Three mushroom cannerries were selected by size which are representative vegetable processing firms in korea for monitoring microbial contamination of processing water, washing water, mushroom before and after washing through first and second washing tanks and, blanched and prolonged mushroom for certain time at room temperature. Total contamination degree was expressed as colony forming unit (CFU) of mesophilic aerobes. The contamination degree of processing water was $10^{2}\;CFU/100\;ml$ and washing water in first and second washing tank were 10 to 100 times higher than processing water. When 2.3 tons of washing water was used for washing 1 ton of mushroom, washing effect was showed by reduction of microbial load but cutting it to 1.8 tonsIl ton of mushroom, microbial load was higher than that of raw mushroom level. Blanching reduced microbial load to 50-500 CFU/g of blanched mushroom and it was not seen much increase of CFU in blanched mushroom left at room temperature for 3 hours in $16^{\circ}C$ processing water. Just after injection of $80^{\circ}C$ brine in container, CFU/ml of brine in container was $84{\times}10^{4}$ but it was increased rapidly to $20{\times}10^{7}$ after 2 hours at ambient temperature.

  • PDF

Characteristics of long-term behavior of VOC species in Korea - PAMS data analysis (우리나라 휘발성유기화합물 화학종의 장기 거동 특성 - 광화학오염물질 측정자료 분석)

  • Park, Ji Hoon;Kang, Soyoung;Song, In-Ho;Lee, Dong-Won;Cho, SeogYeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.56-75
    • /
    • 2018
  • Korean Photochemical Assessment Monitoring Stations (PAMS) have been established since the late 2001 to monitor ambient air concentrations of VOC species, which would enhance understanding photo-chemical formation of ozone and subsequently contribute to developing efficient ozone control strategies. The present study aims at identifying major VOC species and examining their trends by analyzing PAMS monitoring data collected from the year 2006 to 2016. All the 18 PAMS sites operated by the Ministry of Environment were included in the study. PAMS monitored the 56 target VOC species, which are classified into four groups, alkenes, lower alkanes ($C{\leq}3$), higher alkanes ($C{\geq}4$), aromatics. The higher alkanes and aromatics dominated over the lower alkanes and alkenes in the type 2 and 3 PAMS sites except Joongheung site. N-butane was a major alkane species, toluene was a major aromatic species and most of VOCs showed decreasing trends in these sites. On the other hand, only the alkenes showed decreasing trends at the Joongheung site in Yeosu. Major sources of abundant species such as ethane, propane, n-butane, toluene were estimated by analyzing seasonal variations, correlation with other VOC species, and emission profiles. A major source of n-butane was identified as LPG cars, while major sources of toluene varied considerably from one site to another. The lower alkanes were composed of ethane and propane, both of which showed a strong seasonal variation, low in the summer and high in the winter, indicating that a major source might be the heating by gaseous fuels. Ozone formation potentials of VOC species were evaluated by applying MIR and POCP to the measured VOC species concentrations. Toluene contributed the most to total ozone forming potentials followed by m,p-xylene for all the type 2 and 3 PAMS sites except for two sites in Yeosu-Gwangyang. Ethylene and propylene were the first and second contributors to total ozone forming potentials at Joongheung site in Yeosu.

Source Proximity and Meteorological Effects on Residential Ambient Concentrations of PM2.5, Organic Carbon, Elemental Carbon, and p-PAHs in Houston and Los Angeles, USA

  • Kwon, Jaymin;Weisel, Clifford P.;Morandi, Maria T.;Stock, Thomas H.;Turpin, Barbara
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1349-1368
    • /
    • 2016
  • Concentrations of fine particulate matter ($PM_{2.5}$) and several of its particle constituents measured outside homes in Houston, Texas, and Los Angeles, California, were characterized using multiple regression analysis with proximity to point and mobile sources and meteorological factors as the independent variables. $PM_{2.5}$ mass and the concentrations of organic carbon (OC), elemental carbon (EC), benzo-[a]-pyrene (BaP), perylene (Per), benzo-[g,h,i]-perylene (BghiP), and coronene (Cor) were examined. Negative associations of wind speed with concentrations demonstrated the effect of dilution by high wind speed. Atmospheric stability increase was associated with concentration increase. Petrochemical source proximity was included in the EC model in Houston. Area source proximity was not selected for any of the $PM_{2.5}$ constituents' regression models. When the median values of the meteorological factors were used and the proximity to sources varied, the air concentrations calculated using the models for the eleven $PM_{2.5}$ constituents outside the homes closest to influential highways were 1.5-15.8 fold higher than those outside homes furthest from the highway emission sources. When the median distance to the sources was used in the models, the concentrations of the $PM_{2.5}$ constituents varied 2 to 82 fold, as the meteorological conditions varied over the observed range. We found different relationships between the two urban areas, illustrating the unique nature of urban sources and suggesting that localized sources need to be evaluated carefully to understand their potential contributions to $PM_{2.5}$ mass and its particle constituents concentrations near residences, which influence baseline indoor air concentrations and personal exposures. The results of this study could assist in the appropriate design of monitoring networks for community-level sampling and help improve the accuracy of exposure models linking emission sources with estimated pollutant concentrations at the residential level.

Expanding the Substances of Water Quality Standard for the Protection of Human Health Based on Risk Assessment (인체 위해성기반 수질환경기준 항목 확대를 위한 연구)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • Water quality standards (WQS) are mandatory to guarantee the human health and protection of aquatic ecosystems, and maintain the condition of suitable water quality. The present WQS for the protection of human health in Korea contain nine substances (As, Cd, $Cr^{6+}$, CN, Pb, Hg, ABS, organophosphorus compounds and PCBs), but it is insufficient to preserve the human and aquatic ecosystem from a variety of chemicals. Therefore, it is necessary to expand the substance of WQS for the protection of human health. In this study, we chose the 20 chemicals from 43 chemicals of the project entitled 'Development of Integrated Methodology for Evaluation of Water Environment'. The methodology for calculating water quality criteria was amended from the US Environmental Protection Agency (US EPA)'s equation for deriving ambient water quality criteria for the protection of human health. The factors including fish intake, drinking water intake, and human body weight used in the equation reflected Korean situations. The monitoring values were derived from the water quality monitoring data in Korean four main rivers. The orders of priorities of chemicals were evaluated by human health risk assessment, and the proposed WQS was derived by technical and economic analyses. These results were reflected to expand the WQS for the protection of human health.

Indoor and Outdoor Particulate Matter: The Current and Future in Monitoring, Assessment, and Management (실내 외 미세먼지 측정 및 관리 기술 동향)

  • Kim, Jae-Jin;Choi, Wonsik;Kim, Jinsoo;Noh, Youngmin;Son, Youn-Suk;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1635-1641
    • /
    • 2020
  • Air pollution is one of the most severe threats to society globally due to the rapid expansion of urbanization and industrialization. Particularly, particulate matter (PM) pollution was recently designated as a social disaster by the Korean government because of increases in public concerns and the accumulation of scientific evidence that links high levels of PM2.5 (PM smaller than 2.5 ㎛ in diameter) to a long list of adverse health effects. Atmospheric PM concentrations can also affect the indoor PM levels to which people are exposed most of the time. Thus, understanding the characteristics of indoor and ambient PM pollution based on measurements, model simulations, risk assessments, and management technologies is inevitable in establishing effective policies to mitigate social, economic, and health costs incurred by PM pollution. In this special issue, we introduce several interesting studies concerning indoor and outdoor PM from the perspective of monitoring, assessment, and management being conducted by i-SEED (School of Integrated Science for Sustainable Earth & Environmental Disaster at Pukyong National University) and SPMC (School Particulate Matter Center for Energy and Environmental Harmonization). We expect that this special issue can improve our understanding of the current and future of indoor and outdoor PM pollution, integrating the results from interdisciplinary research groups from various academic fields.

Effects of Ambient Particulate Matter($PM_{10}$) on Peak Expiratory Flow and Respiratory Symptoms in Subjects with Bronchial Asthma During Yellow Sand Period (황사기간 중 천식 환자에서 대기 중 미세먼지($PM_{10}$)가 최대호기 유속과 호흡기 증상에 미치는 영향)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Ssun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan;Ju, Young-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.570-578
    • /
    • 2003
  • Background : Ambient particles during Asian dust events are usually sized less than $10{\mu}m$, known to be associated with the adverse effects on the general populations. But, there has been no considerable evidence linking these particles to the adverse effects on airways. The objectives of this study was to investigate the possible adverse effects of Asian dust events on respiratory function and symptoms in subjects with bronchial asthma. Patients and Methods : From march to June 2002, Asthmatic patients who were diagnosed with bronchial challenge test or bronchodilator response were enrolled. We divided them into three groups; mild, moderate, and severe, according to the severity. Subjects with other organ insufficiency such as heart, kidney, liver, and malignancy were excluded. All patients completed twice daily diaries and recorded peak flow rate, respiratory symptom, and daily activity. Daily and hourly mean pollutant levels of particulate matter < $10{\mu}m$ in diameter($PM_{10}$), nitrogen dioxide($NO_2$), sulphur dioxide($SO_2$), ozone($O_3$) and carbon monoxide(CO) were measured at the 10 different monitoring sites. Results : Dust events occured 14 times during the study period. Daily averages of 4 air pollutant were measured with an increased level of $PM_{10}$, decreased level of $NO_2$ and $SO_2$, and no change in CO during dust days compared to those during control days. An increase in $PM_{10}$ concentration was associated with an increase of subjects with PEF variability of >20% (p<0.05), night time symptom(p<0.05), and a decrease in mean PEF (p<0.05), which were calculated by the longitudinal data analysis. Otherwise, there was no association between $PM_{10}$ level and bronchodialtor inhaler, and daytime respiratory symptoms. Conclusion : This study shows evidence that ambient air pollution, especially $PM_{10}$, during Asian dust events, could be one of the many aggravating factors at least in patients with airway diseases. This data can be used as a primary source to set up a new policy on air environmental control and to evaluate the safety of air pollution index. We also expect that this research will help identify precise components of dust, which are more linked to the adverse effects.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.