• 제목/요약/키워드: Ambient monitoring

검색결과 394건 처리시간 0.026초

Operational modal analysis for Canton Tower

  • Niu, Yan;Kraemer, Peter;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.393-410
    • /
    • 2012
  • The 610 m high Canton Tower (formerly named Guangzhou New Television Tower) is currently considered as a benchmark problem for structural health monitoring (SHM) of high-rise slender structures. In the benchmark study task I, a set of 24-hour ambient vibration measurement data has been available for the output-only system identification study. In this paper, the vector autoregressive models (ARV) method is adopted in the operational modal analysis (OMA) for this TV tower. The identified natural frequencies, damping ratios and mode shapes are presented and compared with the available results from some other research groups which used different methods, e.g., the data-driven stochastic subspace identification (SSI-DATA) method, the enhanced frequency domain decomposition (EFDD) algorithm, and an improved modal identification method based on NExT-ERA technique. Furthermore, the environmental effects on the estimated modal parameters are also discussed.

대기오염공정시험법의 체계구축과 개선방향 (Current Status and Prospects of Standard Methods for the Measurements of Air Pollution in Korea)

  • 김기현;배민석
    • 한국대기환경학회지
    • /
    • 제29권4호
    • /
    • pp.439-446
    • /
    • 2013
  • In this research, the present standard analytical methods for the monitoring of air pollution levels established by the Korean Ministry of Environment (KMOE) were examined in reference to the recent outputs of several research projects conducted for their amendments. The evaluation of the two criterion methods between the main (the present guideline) and reference methods (the proposed alternate guideline) was made in terms of authenticity and reliability of the quality assurance (QA) and of compatibility of methods. The results of this comparative evaluation are presented for the analysis of both ambient air and source samples. Based on this analysis, we propose a new direction for the future amendment.

다채널 무선 통신망을 이용한 배전용 변압기 진단 기법에 관한 연구 (A Study on the Diagnostic Technique for Distribution Transformers using Multi-Channel Wireless Communication Network)

  • 김재철;최준호;김동현;문종필;김언석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.131-139
    • /
    • 2001
  • As increasing the accident of Distribution Transformer (DT), we need to manage them efficiently. In this paper, we discusses with the possibility of the diagnostic technique for distribution transformer using relative ageing rate calculation in this paper. The relative ageing rate of the DT could be calculated from the measured top oil temperature, ambient temperature and load current. In order on apply the proposed diagnostic technique we developed an on line Monitoring and Diagnostic System (MDS) which has hardware and software part. Diagnostic device is developed to measure the state information of DT and to send them with R/F(radio frequency) communication. Host computer monitors and saves the receive data. The database is constructed from the data of distributed DT and it is used for estimating loss-of-life in the MDS.

  • PDF

Influence of asphalt removal on operational modal analysis of Egebækvej Bridge

  • Umut Yildirim
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.171-181
    • /
    • 2023
  • Using the most up-to-date system identification methods in both time and frequency domains, the dynamic monitoring data from the reinforced concrete Egebaekvej Bridge near Holte, Denmark, is examined in this investigation. The bridge was erected in the 1960s and was still standing during test campaign before demolishing. The ARTeMIS Modal was adopted to derive the modal parameters from ambient vibration data. Several Operational Modal Analysis (OMA) approaches were applied, including Enhanced Frequency Domain Decomposition (EFDD), Curve-fit Frequency Domain Decomposition (CFDD), and Frequency Domain Decomposition (FDD). Afterward, Principal Component (SSI-PC), Unweighted Principal Component (SSI-UPC) Stochastic Subspace Identification methods were utilized. Danish engineering consulting company, COWI with the allowance of the bridge contractor BARSLUND, allow the researcher for this experimental test to demonstrate the impact of OMA applications.

인구 유동에 따른 서울시 대기 중 초미세먼지 농도 변화 요인 분석 및 노출평가 (Analysis and Exposure Assessment of Factors That Affect the Concentration of Ambient PM2.5 in Seoul Based on Population Movement)

  • 우재민;신지훈;민기홍;김동준;성경화;조만수;우병열;양원호
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.6-15
    • /
    • 2024
  • Background: People's activities have been restricted due to the COVID-19 pandemic. These changes in activity patterns may lead to a decrease in fine particulate matter (PM2.5) concentrations. Additionally, the level of population exposure to PM2.5 may be changed. Objectives: This study aimed to analyze the impact of population movement and meteorological factors on the distribution of PM2.5 concentrations before and after the outbreak of COVID-19. Methods: The study area was Guro-gu in Seoul. The research period was selected as January to March 2020, a period of significant population movement changes caused by COVID-19. The evaluation of the dynamic population was conducted by calculating the absolute difference in population numbers between consecutive hours and comparing them to determine the daily average. Ambient PM2.5 concentrations were estimated for each grid using ordinary kriging in Python. For the population exposure assessment, the population-weighted average concentration was calculated by determining the indoor to outdoor population for each grid and applying the indoor to outdoor ratio to the ambient PM2.5 concentration. To assess the factors influencing changes in the ambient PM2.5 concentration, a statistical analysis was conducted, incorporating population mobility and meteorological factors. Results: Through statistical analysis, the correlation between ambient PM2.5 concentration and population movement was positive on both weekends and weekdays (r=0.71, r=0.266). The results confirmed that most of the relationships were positive, suggesting that a decrease in human activity can lead to a decrease in PM2.5 concentrations. In addition, when population-weighted concentration averages were calculated and the exposure level of the population group was compared before and after the COVID-19 outbreak, the proportion of people exceeding the air quality standard decreased by approximately 15.5%. Conclusions: Human activities can impact ambient concentrations of PM2.5, potentially altering the levels of PM2.5 exposure in the population.

Implementation of a bio-inspired two-mode structural health monitoring system

  • Lin, Tzu-Kang;Yu, Li-Chen;Ku, Chang-Hung;Chang, Kuo-Chun;Kiremidjian, Anne
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.119-137
    • /
    • 2011
  • A bio-inspired two-mode structural health monitoring (SHM) system based on the Na$\ddot{i}$ve Bayes (NB) classification method is discussed in this paper. To implement the molecular biology based Deoxyribonucleic acid (DNA) array concept in structural health monitoring, which has been demonstrated to be superior in disease detection, two types of array expression data have been proposed for the development of the SHM algorithm. For the micro-vibration mode, a two-tier auto-regression with exogenous (AR-ARX) process is used to extract the expression array from the recorded structural time history while an ARX process is applied for the analysis of the earthquake mode. The health condition of the structure is then determined using the NB classification method. In addition, the union concept in probability is used to improve the accuracy of the system. To verify the performance and reliability of the SHM algorithm, a downscaled eight-storey steel building located at the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark structure. The structural response from different damage levels and locations was collected and incorporated in the database to aid the structural health monitoring process. Preliminary verification has demonstrated that the structure health condition can be precisely detected by the proposed algorithm. To implement the developed SHM system in a practical application, a SHM prototype consisting of the input sensing module, the transmission module, and the SHM platform was developed. The vibration data were first measured by the deployed sensor, and subsequently the SHM mode corresponding to the desired excitation is chosen automatically to quickly evaluate the health condition of the structure. Test results from the ambient vibration and shaking table test showed that the condition and location of the benchmark structure damage can be successfully detected by the proposed SHM prototype system, and the information is instantaneously transmitted to a remote server to facilitate real-time monitoring. Implementing the bio-inspired two-mode SHM practically has been successfully demonstrated.

탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링 (Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry)

  • 정인석;조아현;남명진
    • 지구물리와물리탐사
    • /
    • 제27권2호
    • /
    • pp.144-153
    • /
    • 2024
  • 최근 탄성파를 기반으로 건축물 안전진단(structure health monitoring, SHM)을 수행하는 방법들에 대한 연구들이 많이 수행되고 있다. 특히 지구물리탐사에서 주로 적용되어 오던 배경 잡음을 이용하는 탄성파 간섭법(seismic interferometry)이 SHM에 많이 적용되고 있다. 탄성파가 건축물 내부로 전파하며 발생하는 건축물의 반응을 분석하여 건축물의 강성 변화를 추정할 수 있을 뿐만 아니라, 건축물의 손상 여부와 그 위치도 평가할 수 있다. SHM에 적용되는 탄성파 간섭법에 대해 분석한 뒤 실제 적용 사례들도 분석한 결과, 탄성파 간섭법은 건축물의 안정성 평가나 모니터링 등에 적용할 수 있는 건축물 손상 탐지 평가 방법으로써 매우 효과적으로 활용할 수 있다고 판단된다.

우리나라, 미국 및 유럽의 대기환경기준 강도에 관한 비교 연구 (A Comparative Study on the Ambient Air Quality Standard Strength among Korea, the U.S.A. and the EU)

  • 박민빈;이태정;이은선;김동술
    • 한국대기환경학회지
    • /
    • 제32권6호
    • /
    • pp.559-574
    • /
    • 2016
  • Based on air quality monitoring data ('10~'14) of Suwon City provided by the Korean Department of Environment, a fundamental statistic for 5 criteria pollutants such as $SO_2$, CO, $NO_2$, $O_3$, and $PM_{10}$ was initially investigated. The purpose of this paper was to review the ambient air quality standards(AAQS) of Korea, the U.S.A. and the EU and further to assess the degree of standard strength by the achievability of the AAQS comparing each national standard. Since the level and the way of standards for each air pollutant are various among countries, it is difficult to determine the degree of relative attainment using the same set of data above. Further when all the areas having bad air quality for a specific pollutant are classified as non-attainment case, it is more difficult to assess the degree of standard strength. Thus we introduced a new concept called the average concentration distance (ACD) to quantitatively estimate the strength. As results, the Korean 1-hr $NO_2$ AAQS is slightly stronger than the US standard and weaker than the EU standard. The Korean $O_3$ standard is strongest; however, the Korean $PM_{10}$ standard is weakest. Furthermore the equivalent levels of 8-hr $O_3$ standards in the U.S.A. and the EU were respectively estimated as 97.5 and 95.7 percentiles of the Korean standard with maintaining the existing standard of 60 ppb.

활성탄관을 사용하여 포집한 작업환경 공기중 아크릴아마이드의 분석법 (Simple Analytical Method for Acrylamide in the Workplace Air Adsorbed by Charcoal Tube)

  • 양정선;이미영;박인정;강성규
    • 분석과학
    • /
    • 제11권2호
    • /
    • pp.139-144
    • /
    • 1998
  • 아크릴아마이드를 생산하는 공장에서, 근로자가 노출될 가능성이 있는 아크릴아마이드의 양을 평가하기 위하여, 작업환경 시료의 포집과 이에 대한 탈착, 분석조건을 검토하였다. 작업 환경 중 시료 채취를 위한 흡착제로서 활성탄관을 사용하고, 이를 아세톤으로 추출하였을 때 87%의 탈착효율을 나타내었다. 불꽃이온화 검출기가 부착된 가스크로마토그라피로 분석한 경우 검출한계는 0.814 mg/L였고, 이를 40L의 작업환경 공기중 농도로 환산하면 $0.0203mg/m^3$이다. 따라서 산업보건 관련 실험실에 일반화 되어있는 불꽃이온화 검출기(Flame Ionization Detector, FID)를 사용하여도, 아크릴아마이드 허용농도 $0.3mg/m^3$(OSHA, PEL) 내외의 시료를 적절한 감도로 분석이 가능하다. 그러므로 기존의 분석방법으로 알려진 질소, 인 검출기(Nitrogen Phosphorous Detector, NPD)를 사용하지 않아도 아크릴아마이드를 신속하고 경제적으로 분석할 수 있을 것으로 생각된다.

  • PDF

실내.외 공기 중 부유먼지 측정방법 상호간의 비교평가 - 중량법을 대상으로 (Comparative Evaluation of Gravimetric Measurement Methods for Suspended Particles in Indoor and Outdoor Air)

  • 백성옥;박지혜;서영교
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.285-295
    • /
    • 2002
  • In this study, several types of gravimetric methods (such as high, medium, low, and ultra low volume sampling methods) were applied to determine suspended particulate matter concentrations in both ambient and indoor environments. Comparative evaluations were undertaken with SPM data obtained using a variety of samplers (TSP, PM10, and PM4.0) at different sampling flow rates. Correlation coefficients between TSP and PM10 concentrations measured at different flow rates fell in the range of 0.73∼0.94 (n=40). In addition, correlation coefficients for PM concentrations measured by different TSP samplers were in the range of 0.90∼0.95 (n=36 or n=38), while 0.77∼0.91 (n=38) for PM10 samplers. Correlation analysis was also conducted on indoor monitoring data that were measured using ultra-low-volume samplers at both different or identical flow rates. The correlation coefficients were in the range of 0.98∼0.99 (n=38) between TSP and TSP and 0.92∼0.94 (n=38) between TSP and PM10. The mean ratio for high volume PM10 to TSP concentration that was monitored at identical flow rates in the ambient air appeared to be 0.72. The mean ratios of PM10 to TSP and PM4.0 to TSP observed with identical flow rates at indoor environments were 0.47 and 0.40. The results of this study may provide empirical information concerning the compatability of aerosol data obtained by gravimetric sampling methods at different flow rates.