• Title/Summary/Keyword: Ambient Gas

Search Result 735, Processing Time 0.027 seconds

Gas-Particle Partitioning of PCBs in Ambient Air, Yokohama Japan (일본 요코하마 대기 중 PCBs의 가스-입자 분배)

  • Kim Kyoung-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.285-293
    • /
    • 2005
  • This study was aimed at estimation of gas-particle partitioning of polychlorinated biphenyls (PCBs) in ambient air. The samples were collected at urban site in Japan from March 2002 to January 2003. The concentration of total PCBs (from 4 CB to 10 CB) and TEQ (Toxic equivalent) ranged from 62 to $247\;pg/m^3$ and from 2 to $14\;fgTEQ/m^3 $, respectively. The average contribution $(\%)$ of gas phase to total PCBs concentration was above $80\%$, which suggests that in the atmosphere PCBs predominantly existed in the gas phase. The weak correlations between total PCBs concentration and temperature was found. However this result was due to a typhoon during summer and raining during sampling period. The gas-particle partition coefficient (Kp) was obtained as a function of temperature. The partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. The plot of gas/particle partition coefficient (log Kp) vs. sub-cooled liquid vapor pressure $(log\;P_L)$ had reasonable correlations for individual samples but the slope varied among the samples (coefficients of determination for log Kp versus log $P_L$ plot were> 0.76 $(p<0.0001)$, except for 3 samples). As a result, the variations in the slope among the sampling period may be due to change of temperature, raining during sampling period and wind in this study.

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by using Infrared Sensor for Compensation (보상용 적외선 센서를 사용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.124-130
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was built with ASIC implemented thermopile sensor which included temperature sensor and unique elliptical waveguide structures in this paper. The temperature dependency of dual infrared sensor module ($CO_2$ and reference IR sensors) has been characterized and its output voltage characteristics according to the temperature and gas concentration were proposed for the first time. NDIR $CO_2$ gas and reference IR sensors showed linear output voltages according to the variation of ambient temperatures from 243 K to 333 K and their slopes were 14.2 mV/K and 8.8 mV/K, respectively. The output voltages of temperature sensor also presented a linear dependency according to the ambient temperature and could be described with V(T)=-3.191+0.0148T(V). The output voltage ratio between $CO_2$ and reference IR sensors revealed irrelevant to the changes of ambient temperatures and gave a constant value around 1.6255 with standard deviation 0.008 at 0 ppm. The output voltage of $CO_2$ gas sensor at zero ppm $CO_2$ gas consisted of two components; one is caused by the HPB (half pass-band) of IR filter and the other is attributed to the part of $CO_2$ absorption wavelength. The characteristics of output voltages of $CO_2$ gas sensor could be accurately modeled with three parameters which are dependent upon the ambient temperatures and represented small average error less than 1.5% with 5% standard deviation.

Experimental Investigation of Entrainment of Ambient Gases into Diesel Spray (디이젤 噴霧 周圍氣體의 엔트레인먼트에 관한 實驗的 硏究)

  • 하종률;김봉곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.534-540
    • /
    • 1988
  • A study on the mixing process of fuel with ambient gas is necessary to verify combustion process of a diesel engine, especially the mechanism of its ignition delay. In this study, a single shot of diesel spray was injected through either a constant pressure injection system and bypass type injection system. Measurements were made on the flow characteristics of ambient gas and its time history using a hot wire anemometer and a high speed camera. The gas flow direction was determined by a smoke tracer method. (1) The ambient gas of spray flows away at the stagnation part where static pressure value is positive and flows in at the penetration part of a negative value with the steady entrainment length of 0.7. (2) The steady entertainment velocity around the spray in creases from the nozzle tip to the downstream, has the maximum value at the mixing boundary part, and represents zero at the stagnation boundary part after which the stream flows reversely at the stagnation part.

An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet (석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구)

  • 채재우;조용철;전영남;한영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2159-2168
    • /
    • 1992
  • Coal-water slurry is considered to have the potential for displacing petroleum used in the existing oil-fired industrial and utility boilers. The combustion of coal-water slurry(CWS) is a complex process and little is known about the detailed mechanism. In this paper the combustion behavior of a single suspended droplet of CWS in hot gas stream was investigated. The effect of coal particle size, water content in droplet, initial droplet size, ambient temperature and oxygen fraction in ambient gas were studied. The results are as follows; (1) Increasing the oxygen fraction in ambient gas considerably reduced the char combustion time. (2) The variation of water content and coal particle size in droplet showed little effect on the combustion behavior. (3) In the relatively high temperature ambient gas, the water evaporation time became shorter and the combustion process was stable.

Effect of Ambient Gases on the Characteristics of ITO Thin Films for OLEDs

  • Lee, Yu-Lim;Lee, Kyu-Mann
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.203-207
    • /
    • 2009
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of ITO thin films intended for use as anode contacts in OLED (organic light emitting diodes) devices. These ITO thin films are deposited by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar+$O_2$, and Ar+$H_2$) at $300{^{\circ}C}$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.5 sccm to 5 sccm and from 0.01 sccm to 0.25 sccm, respectively. The intensity of the (400) peak in the ITO thin films increased with increasing $O_2$, flow rate whilst the (400) peak was nearly invisible in an atmosphere of Ar+$H_2$. The electrical resistivity of the ITO thin films increased with increasing $O_2$ flow rate, whereas the electrical resistivity decreased sharply under an Ar+$H_2$ atmosphere and was nearly similar regardless of the $H_2$ flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed an average transmittance of over 80% in the visible range. The OLED device was fabricated with different ITO substrates made with the configuration of ITO/$\alpha$-NPD/DPVB/$Alq_3$/LiF/Al in order to elucidate the performance of the ITO substrate. Current density and luminance of OLED devices with ITO thin films deposited in Ar+$H_2$ ambient gas is the highest among all the ITO thin films.

Microstructural Characterization of MOCVD RuOx Thin Films and Effects of Annealing Gas Ambient (MOCVD RuOx 박막의 미세구조 특성평가와 열처리 가스환경 영향)

  • Kim, Gyeong-Won;Kim, Nam-Su;Choe, Il-Sang;Kim, Ho-Jeong;Park, Ju-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.423-429
    • /
    • 2002
  • RuOx thin films were fabricated by the method of liquid delivery MOCVD using Ru(C$_{8}$ $H_{13}$ $O_2$)$_3$ as the precursor and their thermal effects and conductivity were investigated. Ru films deposited at 25$0^{\circ}C$ were annealed at $650^{\circ}C$ for 1min with Ar, $N_2$ or N $H_3$ ambient. The changes of the micro-structure, the surface morphology and the electrical resistivity of the Ru films after annealing were studied. Ar gas was more effective than $N_2$ and N $H_3$ gases as an ambient gas for the post annealing of the Ru films, because of smaller resistivity and denser grains. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that the Ru $O_2$ phase and the silicidation are not observed regardless of the ambient gases. The minimum resistivity of the Ru film is found to have the value of 26.35 $\mu$Ω-cm in Ar ambient. Voids were formed at Ru/TiN interface of the Ru layer after annea1ing in $N_2$ ambient. The $N_2$ gas generated due to the oxidation of the TiN layer accumulated at the Ru/TiN interface, forming bubbles; consequently, the stacked film may peel off the Ru/TiN interface.e.

Optical properties of Si thin films grown by PLD (PLD로 제작한 Si 박막에서의 광학적 특성분석)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.532-534
    • /
    • 2000
  • Si thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was varied from 1 to 3 Torr. After deposition, Si thin film has been annealed again at nitrogen ambient. Strong violet-indigo photoluminescence have been observed from Si thin film annealed in nitrogen ambient gas. As increasing environmental gas pressure, weak green and red emissions from annealed Si thin films also observed by photoluminescence.

  • PDF

A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet (디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구)

  • Yeom, J.K.;Kim, M.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

Off-design Characteristics for Ambient Air Temperature and Turbine Load of Gas Turbine Pre-swirl System (가스터빈 프리스월 시스템의 외기 온도와 터빈 부하 조건에 따른 탈설계점 특성 분석)

  • Park, Hyunwoo;Lee, Jungsoo;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.881-889
    • /
    • 2019
  • The pre-swirl system is the device that minimizes energy loss of turbine cooling airflow from the stationary parts into rotating parts. In this paper, an off-design analysis was conducted for the ambient air temperature and turbine load conditions. The discharge coefficient was constant for ambient air temperature and turbine load. However, adiabatic effectiveness was increased. This is due to the volume flow rate. The volume flow rate was increased at higher ambient temperature and higher turbine load. It means that the volume of cooling air was increased and the cooling performance of the air was improved. Consequently, adiabatic effectiveness increased by 30.46% at 100% turbine load compared to 20% turbine load. And increased by 18.42% at 55℃ ambient air temperature compared to -20℃ ambient air temperature.

Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering

  • Jun, D.G.;Cho, H.H.;Jo, D.B.;Lee, K.M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.260-264
    • /
    • 2012
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of IZO thin films intended for use as anode contacts in the organic light emitting diodes (OLED) devices. These IZO thin films were deposited on the PES film by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar + O2, and Ar + H2) at room temperature. In order to investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon has been changed from 0.1 sccm to 0.5 sccm, respectively. All the IZO thin film has an (222) preferential orientation regardless of ambient gases. The electrical resistivity of the IZO film increased with increasing O2 flow rate, whereas the electrical resistivity decreased sharply under an Ar + H2 atmosphere and was nearly similar regardless of the H2 flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made with the configuration of IZO/α-NPD/DPVB/Alq3/LiF/Al in order to elucidate the performance of the IZO substrate. The current density and the luminance of OLED devices with IZO thin films deposited in 0.5 sccm H2 ambient gas are the highest amongst all other films.