• Title/Summary/Keyword: Amazon Echo

Search Result 11, Processing Time 0.014 seconds

Exploring user experience factors through generational online review analysis of AI speakers (인공지능 스피커의 세대별 온라인 리뷰 분석을 통한 사용자 경험 요인 탐색)

  • Park, Jeongeun;Yang, Dong-Uk;Kim, Ha-Young
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.193-205
    • /
    • 2021
  • The AI speaker market is growing steadily. However, the satisfaction of actual users is only 42%. Therefore, in this paper, we collected reviews on Amazon Echo Dot 3rd and 4th generation models to analyze what hinders the user experience through the topic changes and emotional changes of each generation of AI speakers. By using topic modeling analysis techniques, we found changes in topics and topics that make up reviews for each generation, and examined how user sentiment on topics changed according to generation through deep learning-based sentiment analysis. As a result of topic modeling, five topics were derived for each generation. In the case of the 3rd generation, the topic representing general features of the speaker acted as a positive factor for the product, while user convenience features acted as negative factor. Conversely, in the 4th generation, general features were negatively, and convenience features were positively derived. This analysis is significant in that it can present analysis results that take into account not only lexical features but also contextual features of the entire sentence in terms of methodology.