• 제목/요약/키워드: Alzheimer's disease${\beta}$-amyloid

검색결과 304건 처리시간 0.033초

Protective effects of Acanthopanax divaricatus extract in mouse models of Alzheimer's disease

  • Yan, Ji-Jing;Ahn, Won-Gyun;Jung, Jun-Sub;Kim, Hee-Sung;Hasan, Md. Ashraful;Song, Dong-Keun
    • Nutrition Research and Practice
    • /
    • 제8권4호
    • /
    • pp.386-390
    • /
    • 2014
  • BACKGROUND: Acanthopanax divaricatus var. albeofructus (ADA) extract has been reported to have anti-oxidant, immunomodulatory, and anti-mutagenic activity. MATERIALS/METHODS: We investigated the effects of ADA extract on two mouse models of Alzheimer's disease (AD); intracerebroventricular injection of ${\beta}$-amyloid peptide ($A{\beta}$) and amyloid precursor protein/presenilin 1 (APP/PS1)-transgenic mice. RESULTS: Intra-gastric administration of ADA stem extract (0.25 g/kg, every 12 hrs started from one day prior to injection of $A{\beta}1$-42 until evaluation) effectively blocked $A{\beta}1$-42-induced impairment in passive avoidance performance, and $A{\beta}1$-42-induced increase in immunoreactivities of glial fibrillary acidic protein and interleukin (IL)-$1{\alpha}$ in the hippocampus. In addition, it alleviated the $A{\beta}1$-42-induced decrease in acetylcholine and increase in malondialdehyde levels in the cortex. In APP/PS1-transgenic mice, chronic oral administration of ADA stem extract (0.1 or 0.5 g/kg/day for six months from the age of six to 12 months) resulted in significantly enhanced performance of the novel-object recognition task, and reduced amyloid deposition and IL-$1{\beta}$ in the brain. CONCLUSIONS: The results of this study suggest that ADA stem extract may be useful for prevention and treatment of AD.

모과 에탄올 추출물의 아세틸콜린에스테라제 저해활성과 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향 (The Acetylcholinesterase Inhibitory Activity of the EtOH Extract of Chaenomelis Fructus and its effects on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells)

  • 김주은;조윤정;임재윤
    • 생약학회지
    • /
    • 제46권4호
    • /
    • pp.327-333
    • /
    • 2015
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder symptomatically characterized by impairment in memory and cognitive abilities. AD is characterized pathologically by the deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. In this study, we tested that EtOH extract of the fruits of Chaenomeles sinensis Koehne (CSE) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that CSE increased over 2 folds of the $sAPP{\alpha}$ secretion level, a metabolite of ${\alpha}$-secretase. We showed that CSE reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ by down regulation of ${\beta}$-secretase (BACE) without cytotoxicity. Furthermore, we found that CSE inhibited BACE and acetylcholinesterase activity in vitro. We suggest that Chaenomelis Fructus may be an useful source to develop a herbal medicine for AD.

소합향(蘇合香)이 신경 세포에서 베타 아밀로이드 분비에 미치는 영향 (Effects of Styrax Liquides on the Secretion of ${\beta}$-amyloid Precursor Protein in Neuroblastoma Cells)

  • 임재윤
    • 동의생리병리학회지
    • /
    • 제24권1호
    • /
    • pp.91-95
    • /
    • 2010
  • Alzheimer's disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid (A${\beta}$) peptides. It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. A${\beta}$ peptides have been believed to be neurotoxic and now are also considered to have affects on the mechanism of memory formation, which are generated by processing of amyloid precursor protein (APP). In this study, effects of Styrax Liquides (SL) on the metabolism of APP were analyzed. SL inhibited the secretion of A${\beta}$ from the Neuro2a cell line (APPswe cell) expressing a mutation of APPswe. Immunoblotting study showed that it inhibited ${\beta}$-site APP cleaving enzyme (BACE) from the APPswe cells. We suggest that SL inhibits APP metabolism and A${\beta}$ generation by the means of BACE inhibitory mechanism. This is the first report that SL inhibits the secretion of A${\beta}$ peptides from neuroblastoma cells.

Mitochondrial Complex I Inhibition Accelerates Amyloid Toxicity

  • Joh, Yechan;Choi, Won-Seok
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권4호
    • /
    • pp.417-424
    • /
    • 2017
  • Alzheimer's disease (AD) is neurodegenerative disease, characterized by the progressive decline of memory, cognitive functions, and changes in personality. The major pathological features in postmortem brains are neurofibrillary tangles and amyloid beta ($A{\beta}$) deposits. The majority of AD cases are sporadic and age-related. Although AD pathogenesis has not been established, aging and declining mitochondrial function has been associated. Mitochondrial dysfunction has been observed in AD patients' brains and AD mice models, and the mice with a genetic defect in mitochondrial complex I showed enhanced $A{\beta}$ level in vivo. To elucidate the role of mitochondrial complex I in AD, we used SH-SY5Y cells transfected with DNA constructs expressing human amyloid precursor protein (APP) or human Swedish APP mutant (APP-swe). The expression of APP-swe increased the level of $A{\beta}$ protein in comparison with control. When complex I was inhibited by rotenone, the increase of ROS level was remarkably higher in the cells overexpressing APP-swe compared to control. The number of dead cell was significantly increased in APP-swe-expressing cells by complex I inhibition. We suggest that complex I dysfunction accelerate amyloid toxicity and mitochondrial complex I dysfunction in aging may contribute to the pathogenesis of sporadic AD.

Investigation of the effect of Erythrosine B on a β-amyloid (1-40) peptide using molecular modeling method

  • Lee, Juho;Kwon, Inchan;Cho, Art E.;Jang, Seung Soon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.14-23
    • /
    • 2015
  • Alzheimer's disease is one of the most common types of degenerative dementia. As a considerable cause of Alzheimer's disease, neurotoxic plaques composed of 39 to 42 residue-long amyloid beta($A{\beta}$) fibrils have been found in the patient's brain in large quantity. A previous study found that erythrosine B (ER), a red color food dye approved by FDA, inhibits the formation of amyloid beta fibril structures. Here, in an attempt to elucidate the inhibition mechanism, we performed molecular dynamics simulations to demonstrate the conformational change of $A{\beta}40$ induced by 2 ERs in atomistic detail. During the simulation, the ERs bound to the surfaces of both N-terminus and C-terminus regions of $A{\beta}40$ rapidly. The observed stacking of the ERs and the aromatic side chains near the N-terminus region suggests a possible inhibition mechanism in which disturbing the inter-chain stacking of PHEs destabilizes beta-sheet enriched in amyloid beta fibrils. The bound ERs block water molecules and thereby help stabilizing alpha helical structure at the main chain of C-terminus and interrupt the formation of the salt-bridge ASP23-LYS28 at the same time. Our findings can help better understanding of the current and upcoming treatment studies for Alzheimer's disease by suggesting inhibition mechanism of ER on the conformational transition of $A{\beta}40$ at the molecular level.

  • PDF

알쯔하이머 치매의 동물모형 (Animal Models of Alzheimer's Dementia)

  • 우성일
    • 생물정신의학
    • /
    • 제6권2호
    • /
    • pp.149-152
    • /
    • 1999
  • Transgenic mice models of Alzheimer's disease were produced by overexpressing APP(amyloid precursor protein) mutant and presenilin mutant genes using the promotors that induced neuronal expression. The neuropathologies, electrophysiological changes and behavioral changes that were demonstrated in these transgenic mice models were amyloid changes, gliotic changes, A-beta increases, deficit in LTP(long-term potentiation) and behavioral changes. Some or all of the above changes were found in each transgenic mice model. These models generally showed amyloid neuropathology but they usually lacked the neurofibrillary tangles. So, they can be regarded as partial models of Alzheimer's disease. The development of them is undoubtedly the great progress toward future research.

  • PDF

사인(砂仁)이 Alzheimer's Disease 병태 모델에 미치는 영향 (Effects of Amomum villosum(AMV) Extract on the Alzheimer's Disease Model)

  • 최보윤;정인철;이상룡
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.43-51
    • /
    • 2006
  • This experiment was designed to investigate the effect of Amomum villosum(AMV) on the Alzheimer's disease. The effects of AMV extract on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell line treated by amyloid $\beta$ protein($A{\beta}$) : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA of THP-1 cell line treated by lipopolysaccharide(LPS) : AChE activity of PC-12 cell lysate treated by $A{\beta}$ : serum glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine : behavior of memory deficit mice induced by scopolamine were investigated, respectively. AMV extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$ : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA in THP-1 cell treated by LPS , AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. AMV extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. AMV extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that AMV extract might be usefully applied for prevention and treatment of Alzheimer's disease.

In vitro에서 β-site amyloid precursor protein-cleaving enzyme 활성과 amyloid β protein 생산에 대한 총명탕가미방(聰明湯加味方)의 효과 (Effect of Chongmyung-Tang Prescription Combination on the Production of Amyloid β protein and β-site amyloid precursor protein-cleaving enzyme Activity in vitro)

  • 임정화;정인철;임종순;김승형;이상룡
    • 동의신경정신과학회지
    • /
    • 제21권2호
    • /
    • pp.191-200
    • /
    • 2010
  • Objectives : This experiment was designed to investigate the effect of Chongmyung-Tang Prescription Combination(CmTP-$C_{1-10}$) extract on the production of amyloid $\beta$ protein and $\beta$-site amyloid precursor protein-cleaving enzyme(BACE) activity. Methods : The effect of CmTP-$C_{1-10}$ extract on expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by lipopolysacchride(LPS) and amyloid $\beta$ protein fragment(A$\beta$ fragment) were investigated. The effect of CmTP-$C_{1-10}$ extract on production of amyloid $\beta$ protein(A$\beta$) in BV2 microglia cell line treated by LPS and A$\beta$ fragment were investigated. The effect of CmTP-$C_{1-10}$ extract on BACE activity were investigated. Results : 1. CmTP-$C_9$ extract the most significantly suppressed the expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 2. CmTP-$C_9$ extract significantly suppressed the production of A$\beta$ in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 3. CmTP-$C_9$ extract the most significantly inhibited BACE activity. Conclusions : These results suggest that CmTP-$C_9$ may be effective for the prevention and treatment of Alzheimer's Disease. Investigation into clinical use of CmTP-$C_9$ for Alzheimer's Disease is suggested for future research.

Fructus Corni Officinalis water extract Ameliorates Memory Impairment and Beta amyloid (Aβ) clearance by LRP-1 Expression in the Hippocampus of a Rat model of Alzheimer’s Disease

  • Lee, Ju Won
    • 동의생리병리학회지
    • /
    • 제30권5호
    • /
    • pp.347-354
    • /
    • 2016
  • This study evaluated the effects of Fructus Corni Officinalis water extract (FCE) on congnitive impairment and Aβ clearance induced by beta amyloid Aβ (1-42) injection in the hippocampus of rat. Aβ (1-42) was injected into the hippocampus using a Hamilton syringe and micropump (5 ㎍/5 ㎕, 1 ㎕/min, each hippocampus bilaterally). FCE was administered orally once a day (100, 250, 500 mg/kg) for 4 weeks after the Aβ (1-42) injection. The acquisition of learning and retention of memory were tested using the Morris water maze. Aβ accumulation and Aβ clearance in the hippocampus were observed using immunostaining. Aβ (1-42) level in plasma was confirmed using enzyme-linked immunosorbent assay (ELISA). FCE significantly shortened the escape latencies during acquisition training trials. FCE significantly increased the number of target heading to the platform site and significantly shortened the time for the 1sttargetheadingduringtheretentiontesttrial.FCEsignificantlyattenuatedtheAβ accumulation in the hippocampus produced by Aβ (1-42) injection. FCE significantly increased LRP-1 expression around vessels in the hippocampus and Aβ (1-42) levels in plasma. The results suggest that FCE improved cognitive impairment by ameliorate Aβ clearance and Aβ accumulation in the hippocampus. FCE may be a beneficial herbal formulation in treating cognitive impairment including Alzheimer's disease.

Development of Inhibitors of $\beta$-Amyloid Plaque Formation

  • Kim, Dong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Spring Conference
    • /
    • pp.123-135
    • /
    • 2006
  • Alzheimer's disease (AD) is the most common form of dementia in the aging population and is clinically characterized by a progressive loss of cognitive abilities. Pathologically, it is defined by the appearance of senile plaques - extracellular insoluble, congophilic protein aggregates composed of amyloid $\beta$ (A$\beta$) and neurofibrillary tangles (NFTs) - inyracellular lesions consisting of paired helical filaments from hyperphosphorylated cytoskeletal tau protein as described by Alois Alzheimer a century ago. These hallmarks still serve as the major criteria for a definite diagnosis of the disease. Consequently, one of the key strategy for drug development in this disease area focuses on reducing the concentration of cerebral A$\beta$ plaque by using substances that inhibit A$\beta$ fibril formation. We focused on developing inhibitors by synthesizing several kinds of aromatic molecules. The synthetic compounds were initially screened to evaluate the effective compound by tioflavin T fluorescence assay. The selected effective compounds were tested cytotoxicity and protective effect from A$\beta$-induced neuronal toxicity by cell based MTT assay with HT22 hippocampal neurons. The BBB permeability on effectors was also tested in in vitro co-culture model(HUVEC/C6 cell line). The behavior test wea carried out in mutant APP/PS1 transgenic mouse model of Alzheimer's disease. And inhibition of A$\beta$ fibril formation by the effective compound was monitored with transmitted electron microscopic images.

  • PDF