• Title/Summary/Keyword: Alzheimer's disease${\beta}$-amyloid

Search Result 304, Processing Time 0.027 seconds

The Effect of Jeongshin-tang on Interleukin-1 $\beta$ and $\beta$-Amyloid-Induced Cytokine Production in Human Brain Astrocytes

  • Kim Bo Kyung;Shin Soon Shik;Kang Seon Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.254-259
    • /
    • 2004
  • Jeongshin-tang (JST) is a Korean herbal prescription, which has been successfully applied for the various neuronal diseases. However, it's effect remains unknown in experimental models. To investigate the biological effect of JST in Alzheimer's disease (AD) in vitro model, we analized the production of interleukin (IL)-6 and IL-8, and expression of cyclooxygenase (COX)-2 in IL-1β plus β-amyloid [25-35] fragment (A)-stimulated human astrocytoma cell line U373MG. JST alone had no effect on the cell viability. The production of IL-6 and IL-8 was significantly inhibited by pretreatment with JST (1mg/㎖) on IL-1β plus A-stimulated U373MG cells. Maximal inhibition rate of IL-6 and IL-8 production by JST was about 41.22% (P<0.01) and 34.45% (P<0.05), respectively. The expression level of COX-2 protein was up-regulated by IL-1β plus A but the increased level of COX-2 was inhibited by pretreatment with JST (1 mg/㎖). These data indicate that JST has a regulatory effect on cytokine production and COX-2 expression, which might explain it's beneficial effect in the treatment of AD.

The Effects of MeOH Extract of Hopea chinensis (Merr.) Hand.-Mazz. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (Hopea chinensis (Merr.) Hand.-Mazz. 메탄올 추출물이 신경세포에서 아밀로이드 전구 단백질 대사에 미치는 영향)

  • Chandra, Shrestha Abinash;Kim, Ju Eun;Ham, Ha Neul;Jo, Youn Jeong;Bach, Tran The;Eum, Sang Mi;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.2
    • /
    • pp.182-187
    • /
    • 2018
  • Many plant derived phytochemicals have been considered as the main therapeutic strategy against Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder, and the most predominant cause of dementia in the elderly. Cholinergic deficit, senile plaque/${\beta}$-amyloid ($A{\beta}$) peptide deposition and oxidative stress have been identified as three main pathogenic pathways which contribute to the progression of AD. We screened many different plant species for their effective use in both modern and traditional system of medicines. In this study, we tested that MeOH extract of the stem bark of Hopea chinensis (Merr.) Hand.-Mazz. (HCM) affects on the processing of Amyloid precursor portein (APP) from the APPswe over-expressing Neuro2a cell line. We showed that HCM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ in a dose dependent manner. We found that HCM increased over 1.5 folds of the secretion level of $sAPP{\alpha}$, a metabolite of ${\alpha}$-secretase. Furthermore, we found that HCM inhibited acetylcholinesterase activity in vitro. We suggest that the stem bark of Hopea chinensis may be a useful source to develop a therapeutics for AD.

Crosstalk Signaling between IFN-γ and TGF-β in Microglia Restores the Defective β-amyloid Clearance Pathway in Aging Mice with Alzheimer's Disease

  • Choi, Go-Eun
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.305-310
    • /
    • 2018
  • Microglia are emerging as critical regulators of innate immune responses in AD and other neurodegenerative disorders, highlighting the importance of understanding their molecular and cellular mechanisms. We attempted to determine the role of crosstalk signaling between $IFN-{\gamma}$ and $TGF-{\beta}$ in $A{\beta}$ clearance by microglia cells. We used in vitro and in vivo mouse models that recapitulated acute and chronic aspects of microglial responses to $A{\beta}$ peptides. We showed that crosstalk signaling between $TGF-{\beta}$ and Smad2 was an important mediator of neuro-inflammation. These findings suggest that microglial $TGF-{\beta}$ activity enhances the pathological progression to AD. As $TGF-{\beta}$ displays broad regulatory effects on beneficial microglial functions, the activation of inflammatory crosstalk signaling between $TGF-{\beta}$ and Smad2 may be a promising strategy to restore microglial functions, halt the progression of $A{\beta}$-driven pathology, and prevent AD development.

A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines (($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과)

  • Kim, Hae-Su;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Paek, Kyung-Min;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

Protective role of caffeic acid in an Aβ25-35-induced Alzheimer's disease model

  • Kim, Ji Hyun;Wang, Qian;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.9 no.5
    • /
    • pp.480-488
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is characterized by deficits in memory and cognitive functions. The accumulation of amyloid beta peptide ($A{\beta}$) and oxidative stress in the brain are the most common causes of AD. MATERIALS/METHODS: Caffeic acid (CA) is an active phenolic compound that has a variety of pharmacological actions. We studied the protective abilities of CA in an $A{\beta}_{25-35}$-injected AD mouse model. CA was administered at an oral dose of 10 or 50 mg/kg/day for 2 weeks. Behavioral tests including T-maze, object recognition, and Morris water maze were carried out to assess cognitive abilities. In addition, lipid peroxidation and nitric oxide (NO) production in the brain were measured to investigate the protective effect of CA in oxidative stress. RESULTS: In the T-maze and object recognition tests, novel route awareness and novel object recognition were improved by oral administration of CA compared with the $A{\beta}_{25-35}$-injected control group. These results indicate that administration of CA improved spatial cognitive and memory functions. The Morris water maze test showed that memory function was enhanced by administration of CA. In addition, CA inhibited lipid peroxidation and NO formation in the liver, kidney, and brain compared with the $A{\beta}_{25-35}$-injected control group. In particular, CA 50 mg/kg/day showed the stronger protective effect from cognitive impairment than CA 10 mg/kg/day. CONCLUSIONS: The present results suggest that CA improves $A{\beta}_{25-35}$-induced memory deficits and cognitive impairment through inhibition of lipid peroxidation and NO production.

Diagnosis of Alzheimer's disease through measurement of anti-beta amyloid antibody in patient's serum

  • Sohn, Ji-Hoon;Kim, Hee;So, Jung-On;Huh, Ji-Yeon;Kim, Jong-Won;Kim, Man-Ho;MookJung, In-Hee;Kim, Young-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.04a
    • /
    • pp.139-149
    • /
    • 2006
  • Amyloid beta (A$\beta$) is believed one of the major pathogens of Alzheimer's disease (AD), and the reduction of A$\beta$ is considered a primary therapeutic target. Immunization with A$\beta$ can reduce A$\beta$ burden and pathological features in transgenic AD model mouse. This means anti-A$\beta$ autoantibodies may have a role in AD pathology. Recent findings suggest anti-A$\beta$ autoantibodies level decrease in AD patients. The early detection of AD is important for treatment of this disease. However, diagnosis on AD has only been possible through limited methods such as neuropsychological examination or MRI. To investigate whether it was possible to detect the presence and different levels of naturally occurring anti-A$\beta$ autoantibodies in the plasma of patients with AD and age-matched controls. An advanced ELISA was performed to detect levels of naturally occurring anti-A$\beta$ autoantibodies in the plasma. The level of anti-A$\beta$ auto-antibodies from patients with idiopathic Parkinson's disease or stroke and from normal controls were compared to that of AD patients. Our results showed a significantly lower anti-A$\beta$ autoantibodies level in AD compared to those with other neurological diseases or control. The level of anti-A$\beta$ autoantibodies in the serum may be used to diagnose the presence of AD.

  • PDF

Diagnosis of Alzheimer's disease through measurement of anti-beta amyloid antibody in patient's serum

  • Sohn, Ji-Hoon;Kim, Hee;So, Jung-On;Huh, Ji-Yeon;Kim, Jong-Won;Kim, Man-Ho;MookJung, In-Hee;Kim, Young-Ho
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.137-149
    • /
    • 2006
  • Amyloid beta ($A{\beta}$) is believed one of the major pathogens of Alzheimer's disease (AD), and the reduction of $A{\beta}$ is considered a primary therapeutic target. Immunization with $A{\beta}$ can reduce $A{\beta}$ burden and pathological features in transgenic AD model mouse. This means $anti-A{\beta}$ autoantibodies may have a role in AD pathology. Recent findings suggest $anti-A{\beta}$ autoantibodies level decrease in AD patients. The early detection of AD is important for treatment of this disease. However, diagnosis on AD has only been possible through limited methods such as neuropsychological examination or MRI. To investigate whether it was possible to detect the presence and different levels of naturally occurring $anti-A{\beta}$ autoantibodies in the plasma of patients with AD and age-matched controls. An advanced ELISA was performed to detect levels of naturally occurring $anti-A{\beta}$ autoantibodies in the plasma. The level of $anti-A{\beta}$ auto-antibodies from patients with idiopathic Parkinson's disease or stroke and from normal controls were compared to that of AD patients. Our results showed a significantly lower $anti-A{\beta}$ autoantibodies level in AD compared to those with other neurological diseases or control. The level of $anti-A{\beta}$ autoantibodies in the serum may be used to diagnose the presence of AD.

  • PDF

Populus tomentiglandulosa protects against amyloid-beta25-35-induced neuronal damage in SH-SY5Y cells

  • Yu Ri Kwon;Ji-Hyun Kim;Sanghyun Lee;Hyun Young Kim;Eun Ju Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.408-415
    • /
    • 2023
  • Alzheimer's disease constitutes a large proportion of all neurodegenerative diseases and is mainly caused by excess aggregation of amyloid beta (Aβ), which results in oxidative stress, inflammation, and apoptosis in the neurons. Populus tomentiglandulosa belongs to the Salicaceae family and is widely distributed in Korea; the antioxidant activities of the extract and fractions from P. tomentiglandulosa have been demonstrated in previous studies. Specifically, the ethyl acetate (EtOAc) fraction of P. tomentiglandulosa (EtOAc-PT) shows the most powerful antioxidative activity. Therefore, the present study investigates the protective effects of EtOAc-PT against neuronal damage in Aβ25-35-stimulated SH-SY5Y cells. EtOAc-PT restored cell viability significantly as well as inhibited the levels of reactive oxygen species and lactate dehydrogenase release compared to the Aβ25-35-induced control group. Furthermore, the inflammation- and apoptosis-related protein expressions were investigated to demonstrate its neuroprotective mechanism. EtOAc-PT downmodulated the expressions of inducible nitric oxide synthase, cyclooxygenase-2, B-cell lymphoma 2 associated X, and B-cell lymphoma 2. Thus, the findings show that EtOAc-PT has protective effects against Aβ25-35 by suppressing oxidative stress, inflammation, and apoptosis.

Interaction Models of Substrate Peptides and β-Secretase Studied by NMR Spectroscopy and Molecular Dynamics Simulation

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Jin-Kyoung;Chae, Chi-Bom;Kim, Yangmee
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2009
  • The formation of ${\beta}$-amyloid peptide ($A{\beta}$) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the ${\beta}$-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the ${\beta}$-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of ${\beta}$-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of ${\beta}$-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of ${\beta}$-secretase (P5-P3'), and the side chain of P2- Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by ${\beta}$-secretase than Sub W. The two substrate peptides showed different tendency to bind to ${\beta}$-secretase and this information may useful for drug development to treat and prevent Alzheimer's disease.

Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils

  • Choi, Erika Y.;Kang, Sam Sik;Lee, Sang Kook;Han, Byung Hee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2020
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease and a major cause of dementia in elderly individuals worldwide. Increased deposition of insoluble amyloid β (Aβ) fibrils in the brain is thought be a key neuropathological hallmark of AD. Many recent studies show that natural products such as polyphenolic flavonoids inhibit the formation of insoluble Aβ fibrils and/or destabilize β-sheet-rich Aβ fibrils to form non-cytotoxic aggregates. In the present study, we explored the structure-activity relationship of naturally-occurring biflavonoids on Aβ amyloidogenesis utilizing an in vitro thioflavin T assay with Aβ1-42 peptide which is prone to aggregate more rapidly to fibrils than Aβ1-40 peptide. Among the biflavonoids we tested, we found amentoflavone revealed the most potent effects on inhibiting Aβ1-42 fibrillization (IC50: 0.26 µM), as well as on disassembling preformed Aβ1-42 fibrils (EC50: 0.59 µM). Our structure-activity relationship study suggests that the hydroxyl groups of biflavonoid compounds play an essential role in their molecular interaction with the dynamic process of Aβ1-42 fibrillization. Our atomic force microscopic imaging analysis demonstrates that amentoflavone directly disrupts the fibrillar structure of preformed Aβ1-42 fibrils, resulting in conversion of those fibrils to amorphous Aβ1-42 aggregates. These results indicate that amentoflavone affords the most potent anti-amyloidogenic effects on both inhibition of Aβ1-42 fibrillization and disaggregation of preformed mature Aβ1-42 fibrils.