• Title/Summary/Keyword: Alveolar Organoids

Search Result 3, Processing Time 0.018 seconds

Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity

  • Ji-Hye Jung;Se-Ran Yang;Woo Jin Kim;Chin Kook Rhee;Seok-Ho Hong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.52-64
    • /
    • 2024
  • Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.

Effects of Ginseng Saponins on the Induction of Differentiation in Mammary Epithelial Cells and Mammary tumor Cells (홍삼 사포닌에 의한 유선상피 및 유선암세포의 분화 유도 효과 연구)

  • 오미숙;백기주;전성실;김규원;최강주;김남득
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.188-195
    • /
    • 2000
  • Using Ginseng saponins (crude saponin and total saponin) and ginsenoside Rbl Rb2, Rc, Rd, Re, Rhl, and Rh2 in this study, we have examined the effects of the compounds on the induction of differentiation in normal rat mammary epithelial cells and 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumor cells in culture. When normal rat mammary organoids were cultured in 100-mm culture plates in the presence or absence of ginseng saponins, there were four different cell colonies after two weeks in culture: cobble stone, spindle, honey comb, and senescence type colonies. Ginseng saponins showed different effects on the development of each colonies. Scrape-loading dye transfer tech-nique was performed to measure the effects of total saponin, Rhl, and Rh2 on intercellular junctional communication. Intercellular communication was not observed at short cultilral time, e.g., four or seven days, but when it cultured it up to two weeks, cell to cell communication was observed in saponin-treated cells. Reconstituted basement membrane, Matrigel, supported the growth and development several different multicellular structures from normal mammary organoids (e.g., ductal, webbed, stellate, and squamous colonies) or DMBA-induced mammary tumor (e.g., alveolar unit, foamy alveolar unit, squamous metaplasia, lobule-ductal, stellate, and webbed colony). In ginseng saponin-treated groups, webbed colonies were more and squamous colonies were less than control group. Moreover, the ductal colonies, marker tructure of well-differentiate mammary epithelial cells, were developed more in saponin-treated group than in control group. In conclusion, ginseng saponins affected on the differentiation of normal rat mammary epithelial cells and DMBA-induced mammary tumor cells in culture.

  • PDF

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF