• Title/Summary/Keyword: Aluminum-magnesium alloy

Search Result 79, Processing Time 0.02 seconds

Effects of Alloying Element and Grain Refinement on the Tensile Properties of Mg-Alloy Casted with Sand Mold (사형 주조 마그네슘 합금의 인장 특성에 미치는 합금 원소와 결정립 미세화의 영향)

  • Han, Jae-Jun;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.212-217
    • /
    • 2011
  • The effects of alloying element and grain refinement on the tensile properties of magnesium alloy poured into sand mold were investigated. The strength of magnesium alloy was greatly increased by the addition of aluminium and that was increased with the increased aluminum content added up to 8.10 wt% and decreased beyond that. Even though the strength of Mg-8.10 wt%Al alloy was rather decreased by the addition of zinc, that was increased with increased zinc content added up to 0.50 wt% and decreased with the increased one beyond that. The maximum tensile strength was obtained with 0.50 wt%Mn added. The strength and elongation were simultaneously increased with grain refinement and the optimum amount of strontium addition for this was 0.30 wt%. The optimum chemical composition was obtained and the yield strength, tensile strength and elongation of the alloy with this composition were 90.2, 176.3MPa and 4.43%, respectively.

Atomic-resolution Transmission Electron Microscopy Investigation of η2 Precipitate Growth in Al-Zn-Mg Alloy (원자단위 투과전자현미경을 활용한 알루미늄-아연-마그네슘 합금 내부 η2 석출물 성장 메커니즘 규명)

  • H. Kim;H. N. Han
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.12-17
    • /
    • 2024
  • Aluminum-zinc-magnesium alloy is a well-known alloy that is both strong and lightweight. Precipitation strengthening plays a significant role in the strength mechanism of this alloy, with nano-sized η-based precipitates being the representative precipitates. However, the growth of η precipitates can lead to a decrease in strength, necessitating research into ways to control their growth. In this study, we observed the atomic-level behavior of η2 precipitates and discovered that the precipitates grew through a combination with magnesium after a zinc segregation layer was formed around them.

FRICTION STIR WELDING OF MAGNESIUM ALLOYS

  • Kazuhiro Nakata;Kim, Young-Gon;Masao Ushio
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.511-515
    • /
    • 2002
  • Extruded and cast plates of AZ type magnesium alloys were successfully joined by friction stir welding (FSW). Effect of FSW conditions on the formation of the defect was revealed in relation to tool rotation speed and specimen travel speed. Magnesium alloy with higher aluminum content became difficult to be joined and the optimum condition without defect was restricted into narrow condition range. The structure of the stirred zone was a fine-grained recrystallized structure even in the case of cast AZ91D. FSW joint had better mechanical properties than those of GTA welded joint. Especially the toughness of the stirred zone increased more than that of the base metal.

  • PDF

Development Trend of Magnesium Casting Technology (마그네슘 주조성형기술의 개발동향)

  • Kim, Hyun-Sik;Ye, Dea-Hee;Kang, Min-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.243-248
    • /
    • 2011
  • Magnesium alloys have many advantages such as light-weight, high machinability, damping capacity, etc. So magnesium alloy parts have been used in transportation, mobile phone, military industries. Because of HCP atomic structure, Magnesium is very difficult in plastic deformation process, so most of magnesium products are fabricated by casting process. Magnesium alloys have low heat-capacity, high fluidity and low Fe solubility. For these reasons it is more suitable than aluminum in mass-production by casting. And various casting technologies have been developed. So casting technologies for magnesium developed recently is discussed in this paper.

Current Status of Magnesium Smelting and Recycling Technology (마그네슘의 제련 및 리사이클링 기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.3-14
    • /
    • 2020
  • Magnesium is the third most abundant structural metal after aluminum and iron. Magnesium is the lightest metal in the common metals. It has a density 33 % less than aluminum and 77% lower than steel. However, the primary magnesium production process is highly energy intensive. The recycling of magnesium scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. However, the amount of recovered metal from scrap is limited because of the difficulties to remove the impurities in the scrap. This work provides an overview of the magnesium production and recycling process.

Friction Stir Welding Characteristics of AZ31 Mg Alloy by Orthogonal Array (직교배열법에 의한 AZ31 마그네슘 합금의 마찰교반접합 특성)

  • Kang, Dae-Min;Park, Kyoung-Do;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.16-21
    • /
    • 2012
  • Magnesium alloy has been focussed as lightweight material owing to its high strength even though low density with aluminum alloy, titanium alloy and plastic material. Friction stir welding technique was performed by rotating and plunging a shouldered tool with a small diameter pin into the joint line between two butted plates and useful to join magnesium alloy. In this paper, the experiments of friction stir welding were done to investigate the joint characteristics of AZ31 magnesium alloy. For its evaluation, the orthogonal array method$(L_{27}(3^{13}))$ was applied with four factors of pin diameter, shoulder diameter, travel speed and rotation speed of tool and also three levels of each factor. Nine tools were worked through shoulder diameter of 9, 12, 15mm and pin root diameter of 3, 4, 5mm. In addition tensile tests were excuted for the assessment of mechanical properties for joint conditions. From the results, pin diameter, shoulder diameter, and rotating speed of tool influenced on the tensile strength meaningful, but welding speed did not influence on that by the variance analysis. Beside of that, optimum condition of tensile strength was estimated as following ; shoulder diameter:15mm, welding speed:200mm/min, rotating speed:200rpm.

A Study on the Comparison of Chloride Ion Quantification Methods for Magnesium-Aluminum (Mg-Al) Alloy Powder (마그네슘-알루미늄(Mg-Al) 합금 분말의 염소이온 정량법의 비교에 관한 연구)

  • Yunhwan, Kim;Youngson Choe
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.450-454
    • /
    • 2023
  • Chloride ions in the alloy powder used as flux in Flux Cored Arc Welding (FCAW) can cause pores on the bead surface of the welding metal to cause defects, or chloride remaining in the alloy powder can cause corrosion of the metal. Combustion-ion chromatography is mainly used to quantify the chloride ions in alloy powder, but there is a limitation in that the equipment is expensive and requires a high degree of expertise. Therefore, this study aims to find an easy and accurate quantification method in the field by comparing combustion-ion chromatography (C-IC), which is mainly used for chloride ion quantification of alloy powder, X-ray fluorescence analysis (XRF), and potentiometric titration. In this article, magnesium-aluminum alloy powder is applied to the quantification of chloride ions because it is most commonly used as flux. This study confirmed that potentiometric titration can be applied to the quantification of chloride ions in the alloy powder in the industry field.

The Effect of Tool Surface Treatment and Temperature on Deep Drawability of AZ31 Magnesium Alloy Sheet (툴 표면처리 및 온도가 AZ31 마그네슘 판재의 드로잉성에 미치는 영향)

  • Choo D. G.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • The square cup drawing of magnesium alloy AZ31 $(aluminum\;3\%,\;Zinc\;1\%)$ sheets was studied by experimental approach in various temperatures (200, 250, 300, 350, $400^{\circ}C$) when blank holding force (BHF) was controlled in real-time. And so on, the drawability was measured with the different die and punch coating. The square cup drawing test was performed by three different coated punches (CrN, TiCN, Non-coated). BHF was set about 2.0 KN, forming speed was 50 mm/min, blank thickness were 0.5, 1.0mm and the cup size was 40 mm by 60 mm after forming. The experimental data of square cup drawing test show that the tools coating and temperature were effect on the drawbility.

  • PDF

Measurement of Heat Transfer Coefficient of Magnesium Alloy and Temperature Change of Roll using Heat Transfer Solidification Analysis Method (전열응고해석법을 이용한 마그네슘합금의 열전달계수 및 롤의 온도변화 측정)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.391-395
    • /
    • 2022
  • Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.