• 제목/요약/키워드: Aluminum zinc oxide

검색결과 96건 처리시간 0.017초

산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론 (Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory)

  • 김대희;이가원;김영철
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

분무열분해법(Spray Pyrolysis)에 의한 알루미늄 산화물과 보론 산화물이 함께 도핑된 산화아연(AZOB: $Al_2O_3$ and $B_2O_3$ Co-doped Zinc Oxide)의 분말 제조에 대한 연구 (The studies on synthesis of aluminum oxide and boron oxide co-doped zinc oxide(AZOB) powder by spray pyrolysis)

  • 김상헌
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.731-739
    • /
    • 2014
  • 투명 전도성 산화물로서 알루미늄과 붕소가 함께 도핑된 아연산화물(AZOB)이 $900^{\circ}C$에서 분무 열분해법에 의해 제조되었다. 얻어진 마이크론 크기의 AZOB 분말은 알루미늄, 붕소 및 아연의 수용액으로부터 얻어진다. 분무 열분해로 얻어진 마이크론 크기의 AZOB 분말은 $700^{\circ}C$에서 두 시간동안의 후 소성 과정과 24 시간 동안의 볼 밀링을 통해 나노 크기의 AZOB으로 변환된다. AZOB을 구성하는 일차 입자의 크기를 Debye-Scherrer 식에 의해 계산하였고 압축된 AZOB 펠렛의 표면 저항을 측정하였다.

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

Synthesis and Characterization of Zinc Phosphate Cement Powder and Cement-forming Liquid

  • Park, Choon-Keun
    • The Korean Journal of Ceramics
    • /
    • 제3권4호
    • /
    • pp.269-273
    • /
    • 1997
  • Chemical composition of cement powder influences the setting time and early compressive strength development. The setting time increases as the amounts of zinc oxide and magnesium oxide are increased. For one day compressive strength development, a cement powder with a composition 90% ZnO, 8% MgO and 2% silica resulted in the highest strength (greater than 1, 090 kg/$\textrm{cm}^2$). Cement-forming liquids also need to be buffered, with both aluminum and zinc ions, for a good consistency and a higher strength of the zinc phosphate cement. These liquids control the setting reactions.

  • PDF

Effects of an Aluminum Contact on the Carrier Mobility and Threshold Voltage of Zinc Tin Oxide Transparent Thin Film Transistors

  • Ma, Tae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.609-614
    • /
    • 2014
  • We fabricated amorphous zinc tin oxide (ZTO) transparent thin-film transistors (TTFTs). The effects of Al electrode on the mobility and threshold voltage of the ZTO TTFTs were investigated. It was found that the aluminum (Al)-ZTO contact decreased the mobility and increased the threshold voltage. Traps, originating from $AlO_x$, were assumed to be the cause of degradation. An indium tin oxide film was inserted between Al and ZTO as a buffer layer, forming an ohmic contact, which was revealed to improve the performance of ZTO TTFTs.

알루미늄 도핑된 산화아연 양극을 적용한 고효율 유기발광다이오드 (Efficient Organic Light-emitting Diodes with Aluminum-doped Zinc Oxide Anodes)

  • 이호년;이영구;정종국;이성의;오태식
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.711-715
    • /
    • 2007
  • Properties of organic light-emitting diodes (OLEDs) with aluminum-doped zinc oxide (ZnO:Al) anodes showed different behaviors from OLEDs with indium tin oxide (ITO) anodes according to driving conditions. OLEDs with ITO anodes gave higher current density and luminance in lower voltage region and better EL and power efficiency under lower current density conditions, However, OLEDs with ZnO:Al anodes gave higher current density and luminance in higher voltage region over about 8V and better EL and power efficiency under higher current density over $200mA/cm^2$. These seemed to be due to the differences in conduction properties of semiconducting ZnO:Al and metallic ITO. OLEDs with ZnO:Al anodes showed nearly saturated efficiency under high current driving conditions compared with those of OLEDs with ITO anodes. This meant better charge balance in OLEDs with ZnO:Al anodes. These properties of OLEDs with ZnO:Al anodes are useful in making bright display devices with efficiency.

Pulsed-DC 스퍼터링에서 Reverse Pulse Time에 따른 AZO 박막의 특성 변화에 관한 연구 (A Study on the Dependency of Pulsed-DC Sputtered Aluminum-doped Zinc Oxide Thin Films on the Reverse Pulse Time)

  • 류형석;조진건;권상직;조의식
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.32-36
    • /
    • 2018
  • For various oxygen($O_2$) to argon(Ar) gas ratio, aluminum-doped zinc oxide(AZO) films were deposited for 3 min at different duty ratio by changing reverse pulse times. As the duty ratio increased, the thickness of the AZO film decreased and the sheet resistance increased. It can be concluded that When sputtering AZO Thin film, oxygen interfered with sputtering. When the reverse time was increased, the thickness of AZO was proportional to the real sputtering time and decreased. From the optical transmittance and sheet resistance, it was possible to obtain a higher figure of merits of AZO at a lower reverse pulse time. Even at the short reversed pulse time, it can be concluded that the accumulated charges on the AZO target are completely cleared. At a lower reverse pulse time, pulsed-DC sputtering of AZO is expected to be used instead of DC sputtering in the deposition of transparent conductive oxide(TCO) films without any degradation in thickness and structural/electrical characteristics.

전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가 (Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning)

  • 송찬근;윤종원
    • 한국결정성장학회지
    • /
    • 제21권5호
    • /
    • pp.205-209
    • /
    • 2011
  • ZnO는 반도전성과 초전도성을 나타내며 광학적으로도 독특한 재료로 가스센서, 태양전지, 광학도파관 등 여러 방면에 널리 활용되고 있다. 본 논문에서는 이러한 ZnO에 Al을 첨가함에 따라 광학적 특성에 어떠한 영향을 미치는지 알아보기 위하여 ZnO에 Al 첨가량 변화에 따른 나노구조체를 제작하여 특성을 비교하였다. ZnO 용액은 PVP, ethanol, zinc acetate를 이용하여 Sol의 형태로 제작하였으며, Al첨가용액을 넣어 Al이 첨가된 ZnO Sol을 제작하였다. 제작된 Sol을 전기 방사법을 이용하여 나노구조체를 제조하였다. 제조된 섬유들을 각각 300, 500, $700^{\circ}C$로 열처리 한 후 나노 구조체를 XRD, XPS, SEM을 이용하여 분석하였다. 또한 TGA, DSC를 이용하여 온도변화에 따른 질량 및 열량의 변화를 측정하였다. UVvis를 이용하여 ZnO와 Al이 첨가된 ZnO의 흡광도를 측정 비교하였다.

XPS Study of MoO3 Interlayer Between Aluminum Electrode and Inkjet-Printed Zinc Tin Oxide for Thin-Film Transistor

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.267-270
    • /
    • 2011
  • In the process of inkjet-printed zinc tin oxide thin-film transistor, the effect of metallic interlayer underneath of source and drain electrode was investigated. The reason for the improved electrical properties with thin molybdenum oxide ($MoO_3$) layer was due to the chemically intermixed state of metallic interlayer, aluminum source and drain, and oxide semiconductor together. The atomic configuration of three Mo $3d_3$ and $3d_5$ doublets, three different Al 2p core levels, two Sn $3d_5$, and four different types of oxygen O 1s in the interfaces among those layers was confirmed by X-ray photospectroscopy.

Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 소스/드레인 전극의 영향 (Influence of Source/Drain Electrodes on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors)

  • 마대영;최무희
    • 한국전기전자재료학회논문지
    • /
    • 제28권7호
    • /
    • pp.433-438
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated by using $n^+$ Si wafers as gate electrodes. Indium (In), aluminum (Al), indium tin oxide (ITO), silver (Ag), and gold (Au) were employed for source and drain electrodes, and the mobility and the threshold voltage of ZTO TTFTs were observed as a function of electrode. The ZTO TTFTs adopting In as electrodes showed the highest mobility and the lowest threshold voltage. It was shown that Ag and Au are not suitable for the electrodes of ZTO TTFTs. As the results of this study, it is considered that the interface properties of electrode/ZTO are more influential in the properties of ZTO TTFTs than the conductivity of electrode.