• Title/Summary/Keyword: Aluminum salts

Search Result 46, Processing Time 0.027 seconds

Hot Corrosion of NiCrAlY(ZrO2-Y2O3) Heat Resistant Composite Coatings for Gas Turbines (가스터빈용 NiCrAlY/(ZrO2-Y2O3) 내열복합코팅의 고온 용융염 부식)

  • Lee, Jae Ho;Lee, Changhee;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.506-513
    • /
    • 2010
  • The composite coatings of $(ZrO_2-8Y_2O_3)$/(Ni-22Cr-10Al-1Y) were prepared by the air plasma spraying method. They consisted of (Ni,Cr)-rich regions,$(ZrO_2-Y_2O_3)$-rich regions, and $Al_2O_3$-rich regions that were formed by oxidation of Al from (Ni-22Cr-10Al-1Y) during spraying. The coatings corroded at 800 and $900^{\circ}C$ in NaCl-$Na_2SO_4$ molten salts up to 50 hr. Ni, Cr and Al oxidized to NiO, $Cr_2O_3$ and ${\alpha}-Al_2O_3$, respectively. These oxides and $(ZrO_2-Y_2O_3)$ were dissolved off into the molten salts during hot corrosion, which resulted in the ever-lasting corrosion of the composite coatings. Chromium diffused out from the (Ni,Cr)-rich regions and oxidized to $Cr_2O_3$, which was most frequently found as surface scales. Aluminum retained in the (Ni,Cr)-rich regions were similarly diffused out.

Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment (정수처리 응집효율 개선을 위한 Al(III)염과 Fe(III)염 응집제의 비교)

  • Han, Seung woo;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.325-331
    • /
    • 2015
  • The experimental results of the characteristics of aluminum based and ferric based coagulants for the Nakdong River water showed that the main hydrolysis species contained in alum and $FeCl_3$ are monomeric species of 98% and 93.3%, respectively. The PACl of r=1.2 produced by the addition of base contained 31.2% of polymeric Al species and the PACl of r=2.2 contained 85.0% of polymeric Al species, as showing more polymeric Al species with increasing r value. Coagulation tests using Al(III) and Fe(III) salts coagulants for the Nakdong River water showed that the coagulation effectiveness of turbidity and organic matter was high in the order of $FeCl_3$ > PACl (r=2.2) > PACl (r=1.2) > alum. $FeCl_3$ has showed better flocculation efficiency than Al(III) salts coagulants. In addition, in case of Al(III) coagulants, the Al(III) coagulants of higher basicity, which contained more polymeric Al species, resulted in better coagulation efficiency for both turbidity and organic matter removed. The optimum pH range for all of the coagulants investigated was around pH 7.0 under the experimental pH range of 4.0~9.5. Especially, the highest basicity PACl (r=2.2) and $FeCl_3$ were considered as more appropriate coagulants for the removal of turbidity in the case of raw water exhibiting higher pH.

Reaction Characteristics of Kaolinite-based Additives and Alkali Salts (Kaolinite 계열의 첨가제와 알칼리염의 반응 특성)

  • Jun, HyunJi;Choi, Yujin;Shun, Dowon;Han, Keun-Hee;Bae, Dal-Hee;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.221-227
    • /
    • 2020
  • When the waste solid fuel (SRF, Bio-SRF) is burnt in a boiler, a problem occurs in the combustion process involving the alkali components (Na, K) contained in large amounts in the fuel. The alkaline component has a low melting point, which usually forms low melting point salt in the temperature of the furnace, with the resulting low melting point salts attaching to the heat pipe to form a clinker. Various additives are used to suppress clinker generation, and the additive based on the kaolinite has alkali-aluminum-silica to inhibit the clinker. In this study, the reactivity of the additives based on the kaolinite was compared. The additives utilized were R-kaolinite, B-kaolinite, and A-kaolinite. Also silica and MgO were sourced as the comparison group. The experimental group was employed as a laboratory-scale batch horizontal reactor. The additive and alkaline salts were reacted at a weight ratio of 1 : 1, and the reaction temperature was performed at 900 ℃ for 10 hours. The first measurement of HCl occurring during the experiment was performed 30 minutes after the detection tube was used, and the process was repeated every hour after the experiment. After the reaction, solid residues were photographed for characterization analysis by means of an optical microscope. The reaction characteristics of the kaolinite were confirmed based on the analysis results.

Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process (γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성)

  • Cho, Hyun-Ran;Kim, Sook-Hyun;Park, Byung-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.

Preparation of Flaky α-Al2O3 Crystals by Transition Metal Salts Addition (전이금속염 첨가에 의한 판상 α-Al2O3 결정체 제조)

  • Song, Hyo-Kyung;Park, Byung-Ki;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.384-390
    • /
    • 2005
  • [ ${\alpha}-Al_2O_3$ ] precursor was synthesised by sol-gel method using aluminum sulfate, sodium sulfate and sodium carbonate as law materials. The flaky ${\alpha}-Al_2O_3$ crystals were prepared by heating using precursor about $1,050^{\circ}C$. In this study, the effect of some transition-metal sulfate ($FeSO_4,\;SnSO_4,\;ZnSO_4$) addition have been investigated. When iron sulfate was added, it could see that act on impurities in crystal growth process. In case of tin sulfate, distribution of Platelets was very broad. When flaky ${\alpha}-Al_2O_3$ crystals were prepared zinc sulfate addition, thickness, size, and distribution of platelets was suited to industrial application. The average diameter of flaky ${\alpha}-Al_2O_3$ crystals was about 20 $\mu$m, and its thickness was about 0.3 $\mu$m. Increasing addition of zinc sulfate, thickness of ${\alpha}-Al_2O_3$ platelet was decreased.

A study on the evaluation of phosphate removal efficiency using Fe-coated silica sand (철 코팅 규사의 인산이온 제거 효율 평가 연구)

  • Jo, Eunyoung;Kim, Younghee;Park, Changyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.521-527
    • /
    • 2017
  • Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.

Early Hydration Properties of Calcium Aluminosulfate (3CaO · 3Al2O3 · CaSO4) Prepared by Chemical Synthesis

  • Kim, Hoon-Sang;Kim, Hyung-Chul;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.617-621
    • /
    • 2002
  • Calcium aluminosulfate (3CaO.3Al$_2$O$_3$.CaSO$_4$or $C_4$A$_3$S) was prepared by chemical synthesis from the nitrate salts and aluminum sulfate. $C_4$A$_3$S was the main phase after calcination at 110$0^{\circ}C$. The specific surface areas after calcination at 110$0^{\circ}C$ and 130$0^{\circ}C$ were about 2.5 and 1.0 $m^2$/g, respectively. Hydration was investigated by XRD, DSC, SEM, EDS, conduction calorimetry and analysis of the liquid phase. Calorimetry showed that the induction period was longer than that of a sample prepared by conventional solid state sintering and this was attributed to the formation of amorphous coatings in abundance of $Al_2$O$_3$ and SO$_3$. Crystalline hydration products, principally calcium monosulfoaluminate hydrate and Al(OH)$_3$, appeared subsequently.

Pulverization and Densification Behavior of YAG Powder Synthesized by PVA Polymer Solution Method

  • Im, Hyun-Ho;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.573-580
    • /
    • 2020
  • YAG (Yttrium Aluminum Garnet, Y3Al5O12) has excellent plasma resistance and recently has been used as an alternative to Y2O3 as a chamber coating material in the semiconductor process. However, due to the presence of an impurity phase and difficulties in synthesis and densification, many studies on YAG are being conducted. In this study, YAG powder is synthesized by an organic-inorganic complex solution synthesis method using PVA polymer. The PVA solution is added to the sol in which the metal nitrate salts are dissolved, and the precursor is calcined into a porous and soft YAG powder. By controlling the molecular weight and the amount of PVA polymer, the effect on the particle size and particle shape of the synthesized YAG powder is evaluated. The sintering behavior of the YAG powder compact according to PVA type and grinding time is studied through an examination of its microstructure. Single phase YAG is synthesized at relatively low temperature of 1,000 ℃ and can be pulverized to sub-micron size by ball milling. In addition, sintered YAG with a relative density of about 98 % is obtained by sintering at 1,650 ℃.

Preparation of Y3Al5O12 Nanocrystals by a Glycol Route

  • Bartwal, Kunwar Singh;Kar, Sujan;Kaithwas, Nanda;Deshmukh, Monica;Dave, Mangla;Ryu, Ho-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.151-154
    • /
    • 2007
  • Yttrium aluminum garnet, $Y_3Al_5O_{12}$ (YAG) is an extensively used solid-state laser host material. YAG nanocrystals were synthesized using low-temperature glycol method, a modified sol-gel method performed at low temperature that consists of a mixture of salts that are mostly nitrates in an aqueous media. Single-phase nanocrystalline YAG was obtained at $850^{\circ}C$, which is a much lower temperature than with other techniques such as a wet-chemical technique. The structural characterization is done by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. A crystallite size range of 20-50 nm was observed for the materials prepared at $850-950^{\circ}C$.

Electrochemical Studies of Lithium Ion Battery Current Collector in the Aprotic Electrolytes: I. Al Current Collector (비수용성 전해질내 리튬이온전지용 집전체의 전기화학적 특성 연구: I. Al 집전체)

  • Park, Heai-Ku
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.620-627
    • /
    • 1999
  • Electrochemical properties of the Al current collector being used in lithium ion batteries have been studied in the 4 different aprotic electrolytes(1 M $LiBF_4$ EC : DMC, 1 M $LiBF_4$ EC : EMC. 1 M $LiPF_6$ EC : DMC. 1 M $LiPF_6$ EC : EMC) employing cyclic voltammetry and impedance measurement. Al electrode showed a wide range of the electrochemical window(0.5~4.1 V vs. $Li/Li^{+}$). However, solid interfacial materials has been formed on the Al surface due to reduction of impurities($H_2O$, $O_2$, etc), lithium salts, and electrolytes at low applied potentials, and aluminum oxides in the highly oxidizing potential as well. Especially, Al current collector was susceptible to localized in consequence of impurities in electrolytes.

  • PDF