• Title/Summary/Keyword: Aluminum honeycomb damper

Search Result 1, Processing Time 0.017 seconds

Landing Stability Simulation of a 1/6 Lunar Module with Aluminum Honeycomb Dampers

  • Pham, Van Lai;Zhao, Jun;Goo, Nam Seo;Lim, Jae Hyuk;Hwang, Do-Soon;Park, Jung Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.356-368
    • /
    • 2013
  • The Korea Aerospace Research Institute plans to launch a lunar module by 2025, and so is carrying out a preliminary study. Landing stability on the lunar surface is a key design factor of a lunar module. In this paper, a 1/6 scale model of a lunar module is investigated, for its landing stability on non-level surfaces. The lunar module has four tripod legs, with aluminum honeycomb shock absorbers in each leg strut. ADAMS$^{TM}$, the most widely used multi-body dynamics and motion analysis software, is used to simulate the module's lunar landing. Three types of dampers in the struts (rigid, viscous, and aluminum honeycomb dampers), and two types of lunar surfaces (rigid and elastic) are considered. The Sforce function is adopted, to model the aluminum honeycomb dampers. Details on the modeling and analysis of the landing stability of the 1/6 scale lunar module and the simulation results are provided in this paper.