• Title/Summary/Keyword: Aluminum forming

Search Result 329, Processing Time 0.027 seconds

Enhancement of Electrical Properties of Organic Light-Emitting Diodes Using F4-TCNQ Molecule as a Hole-Transport Layer (F4-TCNQ 분자를 정공 수송층에 이용한 유기 발광 소자의 전기적 특성 향상)

  • Na, Su Hwan;Lee, Won Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.717-721
    • /
    • 2017
  • We studied the performance enhancement of organic light-emitting diodes (OLEDs) using 2,3,5,6-fluoro-7,7,8,8-tetracyanoquinodimethane ($F_4-TCNQ$) as the hole-transport layer. To investigate how $F_4-TCNQ$ affects the device performance, we fabricated a reference device in an ITO (170 nm)/TPD(40 nm)/$Alq_3$(60 nm)/LiF(0.5 nm)/Al(100 nm) structure. Several types of test devices were manufactured by either doping the $F_4-TCNQ$ in the TPD layer or forming a separate $F_4-TCNQ$ layer between the ITO anode and TPD layer. N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD), tri(8-hydroxyquinoline) aluminum ($Alq_3$), and $F_4-TCNQ$ layers were formed by thermal evaporation at a pressure of $10_{-6}$ torr. The deposition rate was $1.0-1.5{\AA}/s$ for TPD and $Alq_3$. The LiF was subsequently thermally evaporated at a deposition rate of $0.2{\AA}/s$. The performance of the OLEDs was considered with respect to the turn-on voltage, luminance, and current efficiency. It was found that the use of $F_4-TCNQ$ in OLEDs enhances the performance of the device. In particular, the use of a separate layer of $F_4-TCNQ$ realizes better device performance than other types of OLEDs.

A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining (평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

A Study of Friction in Microfoming Using Ring Compression Tests and Finite Element Analysis (링 압축시험과 유한요소해석을 이용한 미세성형 공정에서의 마찰특성에 관한 연구)

  • Kim, Hong-Seok;Kim, Geung-Rok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1471-1478
    • /
    • 2010
  • Microforming processes have recently attracted considerable attention from industry and academia since they enable the production of microscale parts using various materials at a high production rate, minimize material loss, and provide parts with excellent mechanical properties. However, for successful development and applications of the microforming process it is critical to take the tribological size effect into consideration because previous studies have shown that traditional friction models for macroscale forming generate significantly erroneous results in the case of microforming. In this paper, we performed scaled ring compression experiments to investigate the tribological size effect of aluminum and brass materials in microforming. The sensitivity of the interfacial friction to the deformation characteristics of the ring was quantitatively analyzed by the finite element analysis. In addition, a friction model based on slip line field and upper boundary techniques was used to theoretically explain the friction mechanism in microforming.

Experimental and numerical investigations on axial crushing of square cross-sections tube with vertical wave

  • Eyvazian, Arameh;Eltai, Elsadig;Musharavati, Farayi;Taghipoor, Hossein;Sebaey, T.A.;Talebizadehsardari, Pouyan
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.119-141
    • /
    • 2020
  • In this paper, wavy square absorbers were experimentally and numerically investigated. Numerical simulations were performed with LS-Dyna software on 36 wavy absorbers and their crushing properties were extracted and compared with the simple one. The effect of different parameters, including wave height, wave depth, and wave type; either internal or external on the crushing characteristics were also investigated. To experimentally create corrugation to validate the numerical results, a set of steel mandrel and matrix along with press machines were used. Since the initial specimens were brittle, they were subjected to heat treatment and annealing to gain the required ductility for forming with mandrel and matrix. The annealing of aluminum shells resulted in a 76%increase in ultimate strain and a 60% and 56% decrease in yield and ultimate stresses, respectively. The results showed that with increasing half-wave height in wavy square absorbers, the maximum force was first reduced and then increased. It was also found that in the specimen with constant diameter and half-wave depth, an increment in the half-wave height led to an initial increase in efficiency, followed by a decline. According to the conducted investigations, the lowe maximum force can be observed in the specimen with zero half-wave depth as compared to those having a depth of 1 cm.

The Effects of Sulfate Formation and Mg Addition on the Selective Catalytic Reduction of NOx with CH4 on Ag/Al2O3 Catalysts (메탄에 의한 Ag/Al2O3 촉매의 선택적 탈질 환원촉매반응에서 탈질전환율에 미치는 황화물 형성의 영향과 Mg첨가 효과)

  • Choi, Hee-Lack;Yu, Chang-Yong;Ha, Heon-Phil
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.159-167
    • /
    • 2011
  • The influence of sulfate on the selective catalytic reduction of $NO_x$ on the Ag/$Al_2O_3$ catalyst was studied when $CH_4$ was used as a reducing agent. Various preparation methods influenced differently on the $deNO_x$ activity. Among the methods, cogelation precipitation gave best activity. When sulfates were formed on the surfaces of samples prepared by impregnated and deposition precipitation, $deNO_x$ activity was enhanced as long as suitable forming condition is satisfied. The major sulfate formed in Ag/$Al_2O_3$ catalyst was the aluminum sulfate and it seems that this sulfate acted as a promoter. When Mg was added to the Ag/$Al_2O_3$ catalyst it promoted $deNO_x$ activity at high temperature. Intentionally added sulfate also enhanced $deNO_x$ activity, when their amount was confined less than 3 wt%.

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

Properties Analysis for Small Elements Added Shadow Mask Materials

  • Kim, Ku-Hak;Kim, Chung-Ho;Kim, Dong-Soo;Kim, One-Seek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1053-1055
    • /
    • 2002
  • Recently CRT is getting large-sized, Flatness and High Fine Pitched in the meantime the raw material for shadow mask is in rapid progress of thinness, Low Thermal Expansion and high strength.Until now we have used AK(Aluminum Killed) & Invar(Fe-Ni alloy) materials for main raw material of shadow mask component. However recently Nb and Co addition and Nb+Co addition, which has advantage of Low Thermal Expansion and High Strength. has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. Among of them, Co addition has been mass production as forming type (Flat CRT) with the beneficial effect of low thermal expansion & high strength for the first time. Since then Nb+Co addition has been used in mass production by the request of much higher strength of shadow mask component. In case of Nb addition, It's thermal expansion coefficient is a little lower than normal Invar and a little higher than Co addition, meanwhile Its Mechanical property is almost similar to Co Addition. The used samples of this experiment are 36%Ni + Fe, 32%Ni + 5%Co + Fe, 32%Ni + 5%Co + 0.3%Nb + Fe, 32%Ni + 0.3%Nb + Fe with heat treatment temperature of 600$^{\circ}C$, 650$^{\circ}C$, 700$^{\circ}C$, 750$^{\circ}C$, 800$^{\circ}C$, 850$^{\circ}C$, 900$^{\circ}C$ respectively under the condition of 15min holding time. After heat treatment, we have observed the change of mechanical property with addition of small elements through mechanical property investigation and metal structure observation as well as transition of thermal expansion coefficient by measuring of thermal expansion coefficient at 850$^{\circ}C$. In conclusion, 5%Co addition indicates that its thermal expansion coefficient is very similar under the condition of at 850$^{\circ}C$ for 15min 's heat treatment. From the experimental result it is suggested that Co addition is mostly suitable for Doming property and Nb addition is mostly suitable for Drop property.

  • PDF

A Study on the Finite Element Analysis of springback characteristics according to stamping process conditions of UHSS with UTS of 1.2GPa (1.2GPa급 초고강도강판의 공정조건에 따른 스프링백 특성에 관한 유한요소해석 연구)

  • Jang, Hyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The biggest topics in the automobile industry are light weightening and fuel efficiency improvement. There's a lot of research going on. It is focused on light weight materials. Light weight material is seen as the best way to reduce fuel consumption and to solve the problem of environmental pollution and resource depletion. For the light weight materials, new materials such as aluminum, magnesium, and carbon-hardening materials can be found. Research on the joining techniques of dual materials, improvement of material properties by improving the method of manufacture of existing materials, and studies on ultra-high strength steel sheets are expected to take up the most weight in lightweight materials. As the strength of the ultra-high strength steel sheets increases during forming, it is difficult to obtain dimensional precision due to the increase in elastic restoring force compared to mild or high strength steel sheets. Spring back is known to be affected by a number of factors due to poor plastic molding, and can be divided into the effects of the material spraying and the process. The study on the plasticitic variables were studied as plasticitic factors that can be controlled by a part company. Tensile testing of ultra-high strength materials was conducted to derive properties for plasticitic analysis and to analyze spring back with two factors controlling the height of the bead and blank holding force by adding tensile force and controlling the flow rate.

Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Metal Laminates (열가소성 섬유금속적층판의 온도를 고려한 유동응력 예측에 대한 연구)

  • Park, E.T.;Lee, B.E.;Kang, D.S.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 2015
  • Evaluation of the elevated temperature flow stress for thermoplastic fiber metal laminates(TFMLs) sheet, comprised of two aluminum sheets in the exterior layers and a self-reinforced polypropylene(SRPP) in the interior layer, was conducted. The flow stress as a function of temperature should be evaluated prior to the actual forming of these materials. The flow stress can be obtained experimentally by uniaxial tensile tests or analytically by deriving a flow stress model. However, the flow stress curve of TFMLs cannot be predicted properly by existing flow stress models because the deformation with temperature of these types of materials is different from that of a generic pure metallic material. Therefore, the flow stress model, which includes the effect of the temperature, should be carefully identified. In the current study, the flow stress of TFMLs were first predicted by using existing flow stress models such as Hollomon, Ludwik, and Johnson-Cook models. It is noted that these existing models could not effectively predict the flow stress. Flow stress models such as the modified Hollomon and modified Ludwik model were proposed with respect to temperatures of $23^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$, $120^{\circ}C$. Then the stress-strain curves, which were predicted using the proposed flow stress models, were compared to the stress-strain curves obtained from experiments. It is confirmed that the proposed flow stress models can predict properly the temperature dependent flow stress of TFMLs.

Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State (반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발)

  • 강충길;김현우;김영도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.581-593
    • /
    • 1990
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by strirring of Al7075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semi-solid alloy. The possibility o homogeneous fiber-reinforce aluminum alloy by addition of $Al_{2}$O$_{3}$ short fibers with vigorous agitation was investigated. The billet of composite materials was fabricated by squeeze casting, and homogeneous dipersion state of fibers in billet of fabricated metal matrix composites was observed. A slurry of semi-solid short fiber metal matrix composites is used in the direct rolling process, and this process showed the fabrication possibility of metal matrix composite sheets. The fabricated sheet was tested regarding vickers hardness, elongation and micro-structure. It has become clear that mashy state processing and working are very useful to obtain parts of composites material closed to near net shape.