• Title/Summary/Keyword: Aluminum forming

Search Result 329, Processing Time 0.046 seconds

Characteristics in Microstructure of Particle Reinforced Al Matrix Composites Fabricated by Spray-Cast Forming Process (분사주조한 입자강화 알루미늄 복합재료의 미세조직 특성)

  • Park, Chong-Sung;Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.530-540
    • /
    • 1994
  • Aluminium-silicon alloy(JIS AC8A) matrix composites reinforced with SiC particles were fabricated by spray-cast forming process, and the microstructure of powders and preforms produced were studied by using an optical and scanning electron microscopy. SiC particles were co-sprayed by mixed phase injection method during the spray casting process. Most of the composite powders formed by this mixed phase injection method exhibit morphology of particle-embedded type, and some exhibits the morphology of particle attached type due to additional attachment of the SiC particles on the surface of the powders in flight. The preforms deposited were resulted in dispersed type microstructure. The pre-solidified droplets and the deposited preform of SiC-reinforced aluminium alloy exhibit finer equiaxed grain size than that of unreinforced aluminium alloy. Eutectic silicons of granular type are crystallized at the corner of the aluminum grains in the preforms deposited, and some SiC particles seem to act as nucleation sites for primary/eutectic silicon during solidification. Such primary/eutectic silicons seem to retard grain growth during the continued spray casting process. It is envisaged from the microstructural observations for the deposited preform that the resultant distribution of SiC injected particles in the Al-Si microsturcture is affected by the amount of liquid phase in the top part of the preform and by the solidification rate of the preform deposited.

  • PDF

The Development of Aluminum Alloy Piston for Two-Stroke Cycle Engine by Powder Forging

  • Park, Chul-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.173-177
    • /
    • 2013
  • The purpose of this paper is to investigate the influences on mechanical properties of two-stroke cycle motor pistons manufactured by casting, conventional forging and powder forging, through the comparison of characteristics, merits and disadvantages of each forming technology. For each forming technology, the optimal process parameters were determined through the experiments for several conditions, and microstructure, hardness, tensile strength and elongation of pistons are compared and analyzed. In conventional forging process, material temperature was $460^{\circ}C$ and the die temperature was $210^{\circ}C$ for the Al 4032. The optimal condition was found as solution treatment under $520^{\circ}C$ for 5 hours, quenching with $23^{\circ}C$ water, and aging under $190^{\circ}C$ for 5 hours. In powder forging process, the proper composition of material was determined and optimal sintering conditions were examined. From the experiment, 1.5% of Si contents on the total weight, $580^{\circ}C$ of sintering temperature, and 25 minutes of sintering time were determined as the optimal process condition. For the optimal condition, the pistons had 76.4~78.3 [HRB] of hardness, and 500 [MPa] of tensile strength after T6 heat treatment.

Application of the Visioplasticity Method to the Axisymmetric Bulk Deformation Processes (축대칭소성가공에 있어서의 변형가시화법의 응용에 대한 연구)

  • Bai, Duck-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.2
    • /
    • pp.31-42
    • /
    • 1985
  • The metal flow and the strain distribution is investigated for the steady state and non-steady state bulk deformation processes by using an improved visioplasticity method which includes the effective smoothing scheme. The comparison of various smoothing schemes leads to the selection of the five- point least square smoothing method which is employed to reduce the measurement errors. As a steady state forming process experiments are carried out for axisy- mmetric forward extrusion through conical and curved dies of various area reduc- tions using Aluminum and steel billets. Axisymmetric backward extrusion is chosen for a nonsteady state forming process. In axisymmetric forward extrusion the results from visioplasticity show that the curved die of a fourth-order polynomial renders more uniform distribution of strain rates and strains. Higher reduction leads to greater strain rates at the outer side of the billet. The visioplastic observation for axisymmetric backward extrusion as a non-steady state deformation process shows the concentration of higher strain at the inner wall of the extruded product. The visioplastic results in forward extrusion are in agreement with the computed results by the finite element method. It is thus shown that the visio- plasticity combined with a smoothing technique is an effective method to determine the pattern and the distribution of strain rates and strains.

  • PDF

A Study on the Molding Process of Carbon Fiber Automotive Wheels by Taguchi method (다구찌법을 이용한 자동차용 카본 휠 성형공정에 관한 연구)

  • Ryu, Mi-Ra;Jeon, Hwan-Young;Park, Chul-Hyun;Bae, Hui-Eun;Bae, Hyo-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.30-37
    • /
    • 2017
  • Weight reduction of the wheel is exerts a great influence on the running performance of the vehicle, a lot of research for a lightweight aluminum wheels progress. In order to select the molding conditions through the experiment on the carbon fiber prepreg molding process based on the design of the mold for manufacturing the carbon wheel using the carbon fiber pressure forming method, the carbon wheel molding process using the Taguchi method And to produce prototypes based on the results.

A Study on the Charactristics od Hard Anodizing fikm of Al-Si Pistom Alloys (Al-Si계 피스톤 합금의 경질양극산화피막의 특성에 관한 연구)

  • 문종환;이진형;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.1
    • /
    • pp.34-43
    • /
    • 1990
  • Al-Si piston alloys such as AlS10CuMg have been anodized to examine apossibility of forming a hard film aat relatively higher temperatures compard with those in conventional sulfuric acid processes. Three types of electrolytes have been employed in this study ; electrolyte A(15% H2SO4, $0^{\circ}C$), electrolyte B(12% H2SO4, 1% oxalic, $10^{\circ}C$), electrolyte C(tartaric acid 125g/L+oxalic 75g/L+aluminum sulfate 225g/L, $25^{\circ}C$). Hard anodisine process in electrolyte B at a current density of 1.54A/dm2 produced a harder film of VHN 396 at a relatibely low film forming voltage compared with those obtained in other electrolyte at equivalent current density. A liner relationship between hardness and abrasion resistance exists for Al-Si piston alloys. The hardness of anodized film decreasees with increasing silicon content in Al-Si alloys and also with bath temperature. The film hardeness of Na-modified alloy os higher than that of P-modified alloy due to its finer microstructre. The film on the silicon phase in Al-Si alloys is observed to be formed by lateral growth of oxide film nucleated at surroundings.

  • PDF

Effect of Coating Layer on Electrode Life for Resistance Spot Welding of Al-Coated Hpf and Zn-Coated Trip Steels (Al 도금 HPF 강판과 전기아연도금 TRIP 강판의 저항 점 용접 시 연속타점 전극의 수명에 미치는 도금층의 영향)

  • Son, Jong Woo;Seo, Jong-Dock;Kim, Dong Cheol;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • The resistance spot welding of high strength steel degrades the weldability because of its high strength with rich chemical composition and coating layer to protect from corrosion. During the each resistance welding process the electrodes tip reacts with coating layer, then subsequently deteriorates and shorten electrode life. In this study, the Al-coated HPF (Hot Press Forming) steels and Zn-coated TRIP steels were used to investigate the electrode life for resistance spot welding. Experimental results show that the reactivity of Al-coating on HPF steels to electrode tip surface behaviors different from the conventional Zn-coated high strength steels. The electrode tip diameter and nugget size in electrode life test of Al-coated HPF steels are observed to be constant with respect to weld numbers. For Al-coated HPF steels, the hard aluminum oxide layer being formed during high temperature heat treatment process reduces reactivity with copper electrode during the resistance welding process. Eventually, the electrode life in resistance spot welding of Al-coated HPF steels has the advantage over the galvanized steel sheets.

Effect of Heat Treatment on Surface Wettability of Al-Si-Mg Alloy (열처리 조건에 따른 Al-Si-Mg계 합금의 표면 젖음성 영향)

  • Jang, Hosung;Choi, Yoojin;Lee, Seungwon;Jeon, Jongbae;Park, Sunghyuk;Shin, Sunmi
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.337-343
    • /
    • 2018
  • The present study investigated the effect of heat treatment process on the surface wettability of an Al-Si-Mg alloy. After solution-treated at $525^{\circ}C$ and aged at $160^{\circ}C$, the alloy showed high hardness due to the formation of precipitates. In addition, surface wettability was improved in such a way that the contact angle of distilled water droplet on the flat surface decreased to $37.6{\sim}42.1^{\circ}$ after the heat treatment. The surface energy predicted by Owens-Wendt equation also confirmed the increase of surface energy after the heat-treatment. However, when the surface roughness increased, the positive effect of the heat treatment on wettability diminished due to the geometrical factors of the rough surface.

Calculation and measurement of Al prompt capture gammas above water in a pool-type reactor

  • Czakoj, Tomas;Kostal, Michal;Losa, Evzen;Matej, Zdenek;Simon, Jan;Mravec, Filip;Cvachovec, Frantisek
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3824-3832
    • /
    • 2022
  • Prompt capture gammas are an important part of the fission reactor gamma field. Because some of the structural materials after neutron capture can emit photons with high energies forming the dominant component of the gamma spectrum in the high energy region, the following study of the high energy capture gamma was carried out. High energy gamma radiation may play a major role in areas of the radiation sciences as reactor dosimetry. The HPGe measurements and calculations of the high-energy aluminum capture gamma were performed at two moderator levels in the VR-1 pool-type reactor. The result comparison for nominal levels was within two sigma uncertainties for the major 7.724 MeV peak. A larger discrepancy of 60% was found for the 7.693 MeV peak. The spectra were also measured using a stilbene detector, and a good agreement between HPGe and stilbene was observed. This confirms the validity of stilbene measurements of gamma flux. Additionally, agreement of the wide peak measurement in 7-9.2 MeV by stilbene detector shows the possibility of using the organic scintillators as an independent power monitor. This fact is valid in these reactor types because power is proportional to the thermal neutron flux, which is also proportional to the production of capture gammas forming the wide peak.

Effect of Alloying Elements on the Microstructure and Texture of the Secondary Ingots made by Al Used Beverage Cans (알루미늄 폐캔을 이용한 2차지금의 미세조직 및 집합조직에 미치는 합금원소의 영향)

  • 박차용;고흥석;강석봉
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.46-52
    • /
    • 2000
  • Aluminum can to can recycling was divided into two stpes. The first step was composed of the processes such as collection of used beverage cans (UBC), shredding, magnetic separation, De-laquiring, melting and casting. The second one was remelting and casting, heat treating, hot and cold rolling, annealing, and can making. In this study, the effect of alloying elements on the microstructure and texture of the secondary ingots made by Al UBC was investigated. In aluminum can to can recycling, the second phase particles appeared in the solidification stage must be controlled by heat treatment. The optimum heat treatment condition was $615^{\circ}C$ for 5hrs. the texture in hot rolled sheet was depressed with increasing Mn content, on the other hand, Si and Fe elements promoted the texture development. The textures of can-body sheet should be controlled in the hot rolling and annealing stage because can was formed from cold rolled sheet without heat treatment.

  • PDF

A Study on the Synthesis of High-Purity ${\alpha}-Al_2O_3$ Ultra-Fine Powders by Wet Chemical Method (습식 합성법에 의한 고순도 ${\alpha}-Al_2O_3$ 미세분말의 합성 연구)

  • Jin-Ho Choy;Jong-Seok Yoo;Yang-Su Han;Joon Kim;Hyeon-Kook Lee;Hyuk-Nyun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.275-279
    • /
    • 1991
  • Ultra-fine alumina, ${\alpha}-Al_2O_3$, with ${\phi}$ = 0.1∼0.5 ${\mu}$m was obtained from pure ammonium aluminum sulfate(alum) as the thermal decomposition product. Pure alum(> 99.7%) could be prepared by the precepitation and the successive recrystallization in an acidic aqueous solution at pH = 1.5∼2.5, which was theoretically predicted by only considering the concentrations of hydroxide and carbonate for aluminum and sodium in the solution, and also experimentally confirmed as the optimum precepitation condition for alum without forming any impurities like aluminum hydroxide or sodium one.

  • PDF