• 제목/요약/키워드: Aluminum form

검색결과 307건 처리시간 0.031초

바나듐광 염배소물 수침출 용액으로부터 바나듐 회수공정 고찰 (Recovery Process of Vanadium from the Leaching Solution of Salt-Roasted Vanadate Ore)

  • 윤호성;허서진;박유진;김철주;정경우;김리나;전호석
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.40-48
    • /
    • 2022
  • 본 연구에서는 바나듐광 염배소-수침출 과정을 거쳐 얻어지는 바나듐 함유 수용액으로부터 바나듐을 암모늄메타바나데이트로 침전시켜 회수할 때, 수용액에 존재하는 다른 성분의 이온들이 바나듐 회수에 미치는 영향을 알아보았다. 바나듐 함유 수용액은 pH가 13 정도인 강알칼리 용액으로서, 암모늄메타바나데이트 침전효율을 높이기 위해서는 수용액 pH를 9 이하로 낮춰야 한다. 그러나 황산으로 수용액 pH를 조절하는 과정에서 알루미늄 이온은 바나듐과 같이 공침되기 때문에 알루미늄 이온을 먼저 제거시켜야 한다. 본 연구에서는 소듐실리케이트를 사용하여 알루미늄-실리케이트 화합물 형태로 침전시킴으로서 알루미늄을 제거하였으며, 이 과정에서 바나듐 손실을 최소화하는 조건에 대하여 알아보았다. 알루미늄 제거 후, 황산을 이용하여 수용액 pH를 9 이하로 조절하는 과정에서 수용액의 실리케이트 성분을 침전시켜 제거하였다. 이 때 황산의 농도와 첨가속도가 바나듐 손실에 큰 영향을 미치며, 가급적 25% 묽은 황산을 사용하여 천천히 첨가함으로서 바나듐 손실을 최소화 하였다. 알루미늄 제거 그리고 수용액 pH 조절 과정을 통하여 얻은 바나듐 수용액에 3 당량의 염화암모늄을 첨가하여 상온에서 침전시킨 결과, 전체적으로 81% 이상의 바나듐을 암모늄메타바나데이트로 회수할 수 있었다. 회수된 암모늄메타바나데이트를 세척한 후 550℃에서 2시간 열처리하여 98.6% 순도의 오산화바나듐을 얻을 수 있었다

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • 제23권6호
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정 (Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors)

  • 김의중;송승훈;김민기;김태형
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

Gamma선 조사로 만든 Brucella Vaccine의 생쥐에 대한 면역력 (Immunogenicity of a Gamma-irradiat d Brucella Vaccine)

  • 안태휴
    • 대한미생물학회지
    • /
    • 제6권1호
    • /
    • pp.15-20
    • /
    • 1971
  • Brucella melitensis균의 치사량($10^6{\gamma}$)의 Gamma선을 조사해 줌으로써 만든 Vaccine과 가온 또는 화학처치법(ether, formalin, phenol)에 의하여 만든 Vaccine을 생쥐에 접종하여 그 면역성부과능력에 대하여 비교실험 해본 결과, Gamma선 조사에 의하여 만든 Vaccine이 보다 좋은 성적을 가져왔음을 알게 되었다. 생균 Vaccine Brucella-abortus strain 19과 Brucella melitensis의 R-form을 대량 주사 해 주었을때 생쥐에 치명적이었으며, 7종의 adjuvant에 대한 효력비교실험은 Freund's complete adjuvant와 aluminum-potassium sulfate와 pectin을 섞어 만든 adjuvant를 제외하고는 그리 의의있는 차이를 발견하지 못했다.

  • PDF

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

5083-0 알루미늄合金의 疲勞균열進展 擧動과 균열닫힘에 관한 硏究 (A study of Fatigue Crack Growth Behavior and Crack Closure in 5083-O Aluminum Alloy)

  • 박영조;김정규;김일현
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.208-214
    • /
    • 1986
  • 본 연구에서는 균열 닫힘에 관한 연구의 일환으로 5083-O 알루미늄합금을 사용하고 소규모강복조건하에서 일정진폭하중피로시험을 시행하여 이 재료의 피로균열 진전속도와 균열닫힘에 관하여 검토하였다.

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: sc-CO2 Mixture for the Removal of Post Etch/Ash Residue

  • You, Seong-sik
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.22-28
    • /
    • 2017
  • The result of stripping process for the removal of the post etch/ash Photoresist (PR) residue on an aluminum patterned wafer by using supercritical $CO_2$ ($sc-CO_2$) mixture, was investigated by scanning of electron microscope (SEM) inspection of wafer, measuring the cloud points and visual observation of the state of $sc-CO_2$ mixtures. It was found that $sc-CO_2$ mixtures were made by mixing additives and $sc-CO_2$ should form homogeneous and transparent phase (HTP) in order to effectively and uniformly remove the post etch/ash PR residue on the aluminum patterned wafer using them. The additives were formulated by mixing and co-solvents like an amine compound and fluorosurfactants used as HTP agents, and the PR residue on the wafer were able to be rapidly and effectively removed using the $sc-CO_2$ mixture of HTP. The five kinds of additives were formulated by the recipe of mixing co-solvents and surfactants, which were able to remove PR residue on the wafer by mixing with $sc-CO_2$ at the stripping temperature range from 40 to $80^{\circ}C$. The five kinds of $sc-CO_2$ mixtures which were named as PR removers were made, which were able to form HTP within the above described stripping temperature. The cloud points of $sc-CO_2$ mixtures were measured to find correlation between them and HTP.

  • PDF

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2001년도 추계학술강연 및 발표대회
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF