• Title/Summary/Keyword: Aluminum composite panel

Search Result 55, Processing Time 0.026 seconds

A Study on the Curing Method to Improve Bonding Strength of Aluminum/CFRP Composites (알루미늄/CFRP 복합재의 접착강도 향상을 위한 경화방법에 관한 연구)

  • 이경엽;양준호;최낙삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.130-135
    • /
    • 2002
  • This study investigates the effect of curing method on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. Lap shear tests and T-peel tests were performed based on the procedure of ASTM 906-94a and ASTMD1876-95, respectively. Test samples were fabricated by using the co-curing method and the secondary curing method. The results showed that the shear strength of test samples made by the co-curing method was 2.5 times greater than that of test samples made by the secondary curing method. The T-peel strength of the co-curing method case was almost 2 times greater than that of the secondary curing method case.

Effect of Aluminum Treatment by Plasma on the Bonding Strength Between Aluminum and CFRP Composites (플라즈마를 적용한 알루미늄의 표면처리가 알루미늄/CFRP 복합재의 접합강도에 미치는 영향)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1981-1987
    • /
    • 2001
  • This paper documents the effect of surface treatment of aluminum on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. The optimal treatment condition of the aluminum was determined by measuring the contact angle and T-peel strength as functions of mixture ratio of acetylene gas to nitrogen gas. The mixture ratios used were 1:9, 3:7, 5:5, 7:3, and 9:1 Lap shear tests and T-peel tests were performed using surface-treated alumiunm/CFRP composites and regular alumiunm/CFRP composites. The results showed that the contact angle was minimized and the T-peel strength was maximized iota the mixture ratio of 5:5. The results also showed that the shear strength of surface-treated alumiunm/CFRP composites was 34% greater than that of regular alumiunm/CFRP composites. The T-peel strength of surface-treated alumiunm/CFRP composites was also 5 times greater than that of regular alumiunm/CFRP composites.

A Study on Low-Velocity Impact Characterization of Various Sandwich Panels for the Korean Low Floor Bus Application (초저상 버스 차체 적용을 위한 샌드위치 패널들의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Shin, Kwang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.506-516
    • /
    • 2007
  • In this paper, a study on low-velocity impact response of four different sandwich panels for the hybrid bodyshell and floor structure application of the Korean low floor bus vehicle was done. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact damage size and depth of the permanent indentation were measured by 3-Dimensional Scanner. Failure modes were studied by sectioning the specimens and observed under optical microscope. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

The Real Scale Fire Tests for Vertical Fire Spread Study of External Finishing Material (외벽 마감재료의 수직화재 확산 연구를 위한 실물화재 실험)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Kim, Jung-Hyun;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • To reduce human life and property damage at the fire in a building, it is most critical to control flame spread in the early stage. Fire spread prevention measure generally includes fire resistance performance securing of structure member in the arson zone and use limitation based on combustion performance of finishing material. The latter is most fundamental fire safety design to determine flame spread, but domestic combustion test determines combustion performance by specimen sized fire test method. Thus, there are many restrictions in the determination of combustion performance by composite material such as sandwich panel. Especially, outer finishing material uses a variety of composite material such as dry bit, aluminum composite panel, and metal panel compared to inner finishing material. Therefore, this study would determine vertical fire spread features by a full scaled fire experiment through the test method of ISO 13785-2, an international test standard.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

Investigation on Adhesion Properties of Sandwich Composite Structures Considering on Surface Treatments

  • Park, Gwanglim;Oh, Kyungwon;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • Recently, various kinds of study on light weight structure are performing in the world. The Al honeycomb sandwich structural type adopt for improvement of lightness and structural stability to major part structure of aircraft or spacecraft. Adhesion badness properties of adhesive and adhesion properties of fillet mainly studied about al honeycomb structure. But study for adhesive properties of sandwich construction with surface treatment of Aluminum alloy barely performed. In this study, adhesive film was used between Al and honeycomb core of honeycomb panel[1]. The study for adhesive properties of sandwich construction with surface treatment of AA 5052 skin was performed.

Torsion Rigidity of Composite Material Cmbody for Low Floor Bus (한국형 저상버스 복합소재 차체에 대한 비틀림 강성 평가)

  • Leem, Song-Gyu;Kim, Yeon-Su;Mok, Jai-Kyun;Jang, Se-Ky;Cho, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.548-553
    • /
    • 2008
  • Low Floor buses have no steps to get on or get off the main cabin to provide the old and the handicapped with easy access. The car body for the low floor bus was designed to consider Korean physical standard, passenger capacity (standee, seated, handicapped), arrangement of vehicle components, and bus law or regulations. It was designed as an one body, without any reinforcement armature, which has light-weight sandwich constructions with glass epoxy skins, aluminum honeycomb cores and inner-frames. In this paper, torsion rigidity of the designed car body was evaluated and compared with that of a car body with reinforcement armatures in the cabin. Finite element method verified that the designed car body without reinforcement armatures could satisfy requirements of torsion rigidity.

  • PDF

Surface Treatment of Metal to Improve Bonding Strength of Metal/Composites (금속재/복합재의 본딩력 향상을 위한 금속재의 표면처리)

  • 양준호;지창헌;이경엽
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.71-74
    • /
    • 2000
  • In this study, the optimal condition of surface treatment for aluminum panel was determined by measuring the contact angle and T-peel strength. The contact angle was measured for various mixture ratios of acetylene gas and nitrogen gas. The mixture (acetylene gas to nitrogen gas) ratios used were 1:9, 3:7, 5:5, 7:3, and 9:1. The contact angle was also measured as a function of time of surface treatment. The results showed that the contact angle was a minimum for mixture ratio of 5:5. T-peel strength was a maximum for the treatment time of 30 second.

  • PDF

Sound Insulation Strategy of the Side Panels in a Tilting Train (틸팅열차 측면재의 차음 전략)

  • Kim, Seockhyun;Seo, Taegun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.33-38
    • /
    • 2011
  • In an express tilting train, side wall insulating the noise from the exterior sound source consists of two parts. One is the layered composite panel including aluminum honeycomb, glass wool and nomex honeycomb. The other is the double glazed window. In this study, sound insulation performance of the two parts is investigated by mass law and experiment. Based on ASTM E2249-02, the intensity sound transmission loss (TL) is measured on the specimens of the two parts. Mass law deviation (MLD) is considered in order to compare the sound insulation performance in respect of weight. Contribution of each part to the sound insulation is analyzed and the sound insulation strategy for the interior noise reduction is investigated.

  • PDF

A Study on the Preparation of Halogen Free M-P Flame Retardant and Its Application to Composite Material (비할로겐 M-P 난연제 제조 및 복합재료 응용 연구)

  • Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.63-71
    • /
    • 2009
  • In order to improve flame retardancy, the halogen free organic melamine phosphate(M-P) flame retardant was synthesized from melamine and phosphoric acid by the reaction of precipitation. The ignition test was carried out preparing hybrid flame retardant compound($H_bFRC$) consisting of organic M-P and inorganic Mg$(OH)_2$ as a flame retardant in the polyolefin resins. The flame retardancy and mechanical properties of flame retardant aluminum composite panel($H_bFRC$-ACP) were performed to investigate the possibility of the composite material, which was contained M-P, as a inner core for $H_bFRC$-ACP. For this study, the results of ignition test indicate that a char formation and drip suppressing effect, and combustion time reduced as the content of M-P increased. The limited oxygen index(LOI) values were measured 17.4vol% and 31.5vol% for LDPE only and $H_bFRC$-3(M-P content: 15wt%), respectively. And it was verified that the $H_bFRC$-3 was needed more oxygen quantity with the increase of M-P content when it combustion. Also, the results from thermogravimetric analysis were observed endothermic peak at $350^{\circ}C$ and $550^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by the mixture of M-P and Mg$(OH)_2$. The LDPE-ACP (using only LDPE as a inner core), $35.13kW/m^2$ of heat release rate(HRR) and 13.43MJ/m2 of total heat release(THR) were measured while the $H_bFRC$-ACP, $10.44kW/m^2$ of HRR and 1.84MJ/m2 of THR were measured by results of cone calorimeter test. In case of $H_bFRC$-ACP, the average gas emission amount of CO and $CO_2$ could be decreased down to 25% and 20%, respectively, in comparison with LDPE-ACP. The mechanical properties such as tensile strength, bending strength and adhesion strength of $H_bFRC$-ACP were revealed slightly high values $54N/mm^2$, $152N/mm^2$ and 120N/25mm, respectively, compared with LDPE-ACP. It was confirmed that flame retardancy was improved with the synergy effect because of char formation by M-P and hydrolysis by Mg$(OH)_2$. The result of this study suggest that $H_bFRC$ can be applied for an adequate halogen free flame retardant composite material as a inner core for ACP.