• 제목/요약/키워드: Aluminum chemical reaction & combustion

검색결과 8건 처리시간 0.032초

분광분석을 활용한 고에너지 레이저 환경에서의 알루미늄-산소 화학반응 연구 (The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser)

  • 김창환
    • 한국항공우주학회지
    • /
    • 제44권9호
    • /
    • pp.789-795
    • /
    • 2016
  • 이차 추진제로 많이 쓰이는 알루미늄을 고출력 레이저를 조사하여 공기 중의 산소와 반응시켜 발생되는 알루미늄과 산소의 화학 반응을 레이저 분광분석법을 이용하여 연구를 수행 하였다. 7ns의 펄스 주기와 1064nm의 주파수를 가진 Q-switched Nd:YAG 레이저로 40 - 2500mJ($6.88{\times}10^{10}-6.53{\times}10^{11}W/cm^2$)의 에너지가 공급되었으며, 플라즈마 빛은 echelle 회절 분광기와 ICCD 카메라로 감지하였다. 분광분석을 통하여 알루미늄과 산소의 원자/분자 신호 분석과 현상이 일어나는 플라즈마 환경의 특성 연구를 위해 들뜸 온도(2200K~6600K) 및 전자밀도($3.15{\times}10^{15}{\sim}2.38{\times}10^{16}cm^{-3}$) 계산, 그리고 알루미늄 표면의 크레이터(Crater) 분석을 수행하였다. 본 연구는 고 레이저 복사 조도 환경하에서 발생되는 화학 반응과 플라즈마의 특성을 파악하는 방법을 제시하고 있다.

CrW 전율고용체 첨가 내열 알루미늄 합금에 관한 연구 (The Study of Heat Resistant Aluminum Alloy with CrW Homogeneous Solid Solution)

  • 김진평;성시영;한범석;김상호
    • 한국주조공학회지
    • /
    • 제33권3호
    • /
    • pp.122-126
    • /
    • 2013
  • Recently, heat-resistant aluminum alloy has been re-focused as a downsizing materials for the internal combustion engines. Heat-resistant Al alloy development and many researches are still ongoing for the purpose of improving thermal stability, high-temperature mechanical strength and fatigue properties. The conventional principle of heat-resistant Al alloy is the precipitation of intermetallic compounds by adding a variety of elements is generally used to improve the mechanical properties of Al alloys. Heat resistant aluminum alloys have been produced by CrW homogeneous solid solution to overcome the limit of conventional heat resistant aluminum alloy. From EPMA, it is found that CrW homogeneous soild solution phases with the size of $50-100{\mu}m$ have been dispersed uniformly, and there is no reaction between aluminum and CrW alloy. In addition, after maintaining at high temperature of 573 K, there is no growth of hardening phase, nor desolved, but CrW still exists as a homogeneous solid solution.

표면화학 반응을 통한 Laser-Ablated 알루미늄의 Detonation 현상 연구 (Detonation Initiation via Surface Chemical Reaction of Laser-Ablated Aluminum Sample)

  • 김창환;여재익
    • 대한기계학회논문집B
    • /
    • 제36권2호
    • /
    • pp.197-204
    • /
    • 2012
  • 본 논문에서는 공기 중에서 높은 레이저 복사 조도에 따른 효과에 의해 발생되는 금속 플라즈마의 발달 과정에 대하여 레이저 펄스가 끝나는 이후로 쉐도우그래프(Shadowgraph) 가시화 방법을 이용하여 현상을 연구하였다. 따라서 레이저에 의한 데토네이션의 발생과 이를 일으키는 연소 과정 대한 연구가 진행되었다. 본 논문의 가장 중요한 점들은 높은 레이저 에너지에 의해 삭마 된 기체 상태의 알루미늄과 공기로부터의 산소와의 화학 반응의 진행을 관측했을 뿐만 아니라, 화학 반응 최종 산화물을 X선 회절 분석법(X-Ray Diffraction)을 통해 관측한 것이다. 그리고 레이저를 통해 유도된 화학적 반응 파와 공기 중에서의 알루미늄 분진 폭발의 데토네이션과의 양적인 평가를 유도하였다. 이러한 연구는 덩어리 상태의 금속 샘플에서 공기 중의 산소를 이용하여 데토네이션을 발생시키는 새로운 방법을 제시할 것으로 여겨진다.

고 에너지 레이저를 통한 알루미늄-산소 연소현상에 대한 분광분석 (The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser)

  • 김창환;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.608-611
    • /
    • 2011
  • 이차 추진제로 많이 쓰이는 알루미늄을 고출력 레이저를 이용하여 공기 중의 산소와 반응시켜 발생되는 rich 및 stoichiometric 상태의 알루미늄-산소 연소 현상에 대해 레이저 분광분석법을 이용하여 연구하였다. 7ns의 펄스 주기와 1064nm의 주파수를 가진 Q-switched Nd:YAG 레이저로 40 - 2500mJ의 에너지가 공급되었으며, 플라즈마 빛은 echelle 회절 분광기와 ICCD 카메라로 감지하였다. 레이저 분광분석을 통하여 연료인 알루미늄과 산화제인 산소의 원자 신호를 얻었을 뿐만 아니라, 현상이 일어나는 환경인 플라즈마 온도와 전자밀도가 계산되었다. 특정 전자 밀도비 비교를 통하여, 고출력 레이저를 통해 일어나는 알루미늄과 산소의 연소 및 폭발 현상 변화에 대한 분석이 가능하다는 것에 본 논문의 중요성이 있다.

  • PDF

고 에너지 레이저를 통한 laser-ablated 알루미늄의 detonation 현상 연구 (The study of detonation of laser-ablated aluminum by high power laser)

  • 김창환;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.425-429
    • /
    • 2011
  • 높은 레이저 복사 조도에 발생되는 금속 플라즈마의 발달 과정과 레이저 펄스 이후의 shadowgraph를 이용해 공기 중에서의 데토네이션과 연소 현상에 대해 연구되었다. 본 논문의 가장 중요한 점은 높은 레이저 에너지에 의해 삭마 된 알루미늄 플라즈마와 공기로부터의 산소와의 화학반응의 진행을 XRD를 통해 관측한 것이다. 또한 레이저를 통해 유도된 화학적 반응 파와 공기 중에서의 알루미늄 분진 폭발의 데토네이션과의 양적인 평가를 유도하였다. 이러한 연구는 덩어리 상태의 금속 샘플에서 산화제를 필요로 하지 않고 데토네이션을 발생시키는 새로운 방법을 제시할 것으로 여겨진다.

  • PDF

연소 합성 공정을 이용한 Mullite의 합성 (A Study on the Synthesis of Mullite by Combustion Synthesis Process)

  • 이강현;이채현;김택남;김종옥;임대영;박원규
    • 공학논문집
    • /
    • 제2권1호
    • /
    • pp.133-138
    • /
    • 1997
  • Mullite 분말을 합성하는 제조공정에서 기존의 분말합성법은 $1300^{\circ}C$이상의 높은 온도와 긴 반응시간과 cost 면에서 비싸다는 문제점을 안고 있다. 따라서 본 연구에서는 비교적 제조공정이 간단하고 짧은 반응시간내에 낮은 온도에서 미립의 산화물계 분말을 합성할 수 있는 연소 합성법으로 mullite 분말을 합성하였다. 금속의 질산염, 미립의 $SiO_2$분말과 연료를 적정 mole비로 혼합하여 공정변수에 따라 mullite를 합성하고, 그의 물성을 조사하였다. Hot plate에서의 실험은 연료의 양에 관계없이 mullite는 합성되지 않았다. 그러나, $500^{\circ}C$ 열처리로 실험에서는 mullite와 약간의 alumina, cristobalite가 보였고, 특히 aluminum nitrate, silica, urea 각각의 조성이 화학양론비였을 때 거의 완벽한 mullite를 얻을 수 있었다.

  • PDF

용강 중 Al 최대 농도에 대한 Al 드로스 장입 조건의 영향: 전기로 공정 내 화학 에너지 향상을 위한 기반 연구 (Influence of Charging Condition of Al-dross on Maximum Concentration of Al in Molten Steel : Fundamental study for improvement of chemical energy in EAF process)

  • 김규완;김선중
    • 자원리싸이클링
    • /
    • 제28권4호
    • /
    • pp.44-50
    • /
    • 2019
  • 국내 전기로 공정에서 산화 반응열 및 탄소 연소열 등으로 인한 화학에너지는 전체 투입 에너지 대비 30%정도로 알려져 있다. 전기로에서 $CO_2$를 저감하기 위해서는 전기로 용해 구간 중에 사용되는 전력에너지를 줄이고 화학에너지 사용을 높여야 한다. 일반적으로 용강 중 탄소를 단독으로 투입할 경우, 탄소가 용강에 용해되기 전 낮은 밀도로 인해 슬래그 층으로 부유한다. 용강 중 탄소 농도가 높을 시 취입하는 산소와 용강 중 탄소의 연소반응으로 인해 전력에너지를 낮추며 화학에너지 사용량을 높일 수 있다. 따라서 탄소 연소열의 효율을 높이기 위해서는 용강 중 새로운 탄재 장입 조건이 필요하다. 한편, Al 제련 후의 부산물로 알려져 있는 Al 드로스는 금속성 Al을 25 mass% 이상 함유하고 있으며 Al은 탄소와 비교하여 높은 산화열을 가지고 있다. 그러나 Al 드로스는 재활용이 어려워 거의 매립하고 있으며, Al 드로스 내 Al의 산화열을 효과적으로 활용하기 위해서는 철강 공정 적용에 대한 연구가 필요하다. 본 연구에서는 화학 에너지의 활용 증대를 위한 기반연구로서, 분코크스와 Al 드로스를 화학에너지 연료로서 활용하여 다양한 배합비 및 반응 온도에서 용강 중 탄소 및 알루미늄의 용해 농도와 용해효율을 조사하였다.

Kaolinite 계열의 첨가제와 알칼리염의 반응 특성 (Reaction Characteristics of Kaolinite-based Additives and Alkali Salts)

  • 전현지;최유진;선도원;한근희;배달희;이영우
    • 청정기술
    • /
    • 제26권3호
    • /
    • pp.221-227
    • /
    • 2020
  • 폐기물고형연료(SRF, Bio-SRF)가 보일러에서 연소 될 때, 연료에 다량 함유되어있는 알칼리 성분(Na, K) 들이 연소과정에서 문제를 발생시킨다. 알칼리 성분은 낮은 melting point를 가지고 있어 통상 연소로 온도 내에서 저융점 염을 형성하고, 생성된 저융점 염들은 전열관에 달라붙어 클링커를 형성한다. 클링커생성을 억제하기 위해 다양한 첨가제가 사용되고 있으며, 고령석 기반의 첨가제는 알칼리-알루미늄-실리카가 형성되어 클링커를 억제한다. 본 연구에서는 고령석을 기반으로 하는 첨가제의 반응성을 비교 하였다. 사용된 첨가제는 R-kaolinite, B-kaolinite, A-kaolinite를 사용하였고 비교군 으로 silica와 MgO를 사용하였다. 실험은 실험실 규모의 회분식 수평형 반응기를 사용하였다. 첨가제와 알칼리염은 중량비 1:1로 반응토록 하였으며 반응 온도는 900 ℃에서 10시간 수행하였다. 실험 중 발생한 HCl은 검지관을 사용하여 30분 후 첫 측정을 하고 이후 1시간마다 반복하여 측정하였다. 반응 후 고체 잔여물은 특성 분석을 위하여 광학현미경으로 촬영하였다. 분석결과를 토대로 고령석의 반응특성을 확인하였다.