• Title/Summary/Keyword: Aluminum beam

Search Result 286, Processing Time 0.027 seconds

Verification of Shielding Materials for Customized Block on Metal 3D Printing (금속 3D 프린팅을 통한 맞춤형 차폐블록 제작에 사용되는 차폐 재료 검증)

  • Kyung-Hwan, Jung;Dong-Hee, Han;Jang-Oh, Kim;Hyun-Joon, Choi;Cheol-Ha, Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2023
  • As 3D printing technology is used in the medical field, interest in metal materials is increasing. The Department of Radiation Oncology uses a shielding block to shield the patient's normal tissue from unnecessary exposure during electron beam therapy. However, problems such as handling of heavy metal materials such as lead and cadmium, reproducibility according to skill level and uncertainty of arrangement have been reported. In this study, candidate materials that can be used for metal 3D printing are selected, and the physical properties and radiation dose of each material are analyzed to develop a customized shielding block that can be used in electron beam therapy. As candidate materials, aluminum alloy (d = 2.68 g/cm3), titanium alloy (d = 4.42 g/cm3), and cobalt chromium alloy (d = 8.3 g/cm3) were selected. The thickness of the 95% shielding rate point was derived using the Monte Carlo Simulation with the irradiation surface and 6, 9, 12, and 16 energies. As a result of the simulation, among the metal 3D printing materials, cobalt chromium alloy (d = 8.3 g/cm3) was similar to the existing shielding block (d = 9.4 g/cm3) in shielding thickness for each energy. In a follow-on study, it is necessary to evaluate the usefulness in clinical practice using customized shielding blocks made by metal 3D printing and to verify experiments through various radiation treatment plan conditions.

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

Evaluation of Shielding Performance of Tungsten Containing 3D Printing Materials for High-energy Electron Radiation Therapy (고에너지 전자선 치료 시 텅스텐 함유 3D 프린팅 물질의 차폐 성능 평가)

  • Yong-In Cho;Jung-Hoon Kim;Sang-Il Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.641-649
    • /
    • 2023
  • This study compares and analyzes the performance of a shield manufactured using 3D printing technology to find out its applicability as a shield in high-energy electron beam therapy. Actual measurement and monte carlo simulations were performed to evaluate the shielding performance of 3D printing materials for high-energy electron beams. First, in order to secure reliability for the simulation, a source term evaluation was conducted by referring to the IAEA's TRS-398 recommendation. Second, to analyze the shielding performance of PLA+W (93%), a specimen was manufactured using a 3D printer, and the shielding rate by thickness according to electron beam energy was evaluated. Third, the shielding thickness required for electron beam treatment was calculated through a comparative analysis of shielding performance between PLA+W (93%) and existing shielding bodies. First, as a result of the evaluation of the source term through actual measurement and simulation, the TRS-398 recommendation was satisfied with an error of less than 1%, thereby securing the reliability of the simulation. Second, as a result of the shielding performance analysis for PLA+W (93%), 6 MeV electron beams showed a shielding rate of more than 95% at 3.12 mm, and 15 MeV electron beams showed a shielding rate of more than 90% at 10 mm thickness. Third, through simulations, comparative analysis between PLA+W (93%) materials and existing shields showed high shielding rates within the same thickness in the order of tungsten, lead, copper, PLA+W (93%), and aluminum. 6 MeV electron beams showed almost similar shielding rates at 5 mm or more and 15 MeV electron beams. Through this study in the future, it is judged that it can be used as basic data for the production and application of shielding bodies using PLA+W (93%) materials in high-energy electron beam treatment.

Trace impurity analysis of Cu films using GDMS: concentration change of impurities by applying negative substrate bias voltage (글로우방전 질량분석법을 이용한 구리 박막내의 미량불순물 분석: 음의 기판 바이어스에 의한 불순물원소의 농도변화)

  • Lim Jae-Won;Isshiki Minoru
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Glow discharge mass spectrometry(GDMS) was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. Cu films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -50 V using a non-mass separated ion beam deposition method. Since do GDMS has a little difficulty to apply to thin films because of the accompanying non-conducting substrate, we have used an aluminum foil to cover the edge of the Cu film in order to make an electrical contact of the Cu film deposited on the non-conducting substrate. As a result, the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage although both the Cu films were contaminated during the deposition. It was found that the concentration change of each impurity in the Cu films by applying the negative substrate bias voltage is related to the difference in their ionization potentials. The purification effect by applying the negative substrate bias voltage might result from the following reasons: 1) Penning ionization and an ionization mechanism proposed in the present study, 2) difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.

Acoustic Nonlinearity of Narrow-Band Surface Wave Generated by Laser Beam with Line-Arrayed Slit Mask (선배열 슬릿마스크를 이용한 협대역 레이저 여기 표면파의 음향 비선형성)

  • Choi, Sung-Ho;Nam, Tae-Hyung;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1877-1883
    • /
    • 2010
  • We examined the mechanism of generation of higher harmonics by theoretically analyzing the frequency characteristics of a narrow-band surface wave generated by a laser beam with line-arrayed slit masks. We experimentally analyzed the effects of slit opening width and laser intensity on the acoustic nonlinearity of aluminum 6061-T6 alloy by using single-slit and line-arrayed slit masks. The magnitude of the harmonic wave depended on the slit opening width. In our experiment, we generated a 1.75-MHz surface wave by using an arrayed slit with intervals of 1.67 mm. The magnitude of the second harmonic component decreased about by 80% when the slit opening width was increased from 0.5 mm to 1.0 mm. In addition, the relationship between the magnitudes of the fundamental and the second harmonic wave showed good linearity, which agreed well with the typical behavior of acoustic nonlinearity.

Part I Advantages re Applications of Slab type YAG Laser PartII R&D status of All Solid-State Laser in JAPAN

  • Iehisa, Nobuaki
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 1998.11a
    • /
    • pp.0-0
    • /
    • 1998
  • -Part I- As market needs become more various, the production of smaller quantities of a wider variety of products becomes increasingly important. In addition, in order to meet demands for more efficient production, long-term unmanned factory operation is prevailing at a remarkable pace. Within this context, laser machines are gaining increasing popularity for use in applications such as cutting and welding metallic and ceramic materials. FANUC supplies four models of $CO_2$ laser oscillators with laser power ranging from 1.5㎾ to 6㎾ on an OEM basis to machine tool builders. However, FANUC has been requested to produce laser oscillators that allow more compact and lower-cost laser machines to be built. To meet such demands, FANUC has developed six models of Slab type YAG laser oscillators with output power ranging from 150W to 2㎾. These oscillators are designed mainly fur cutting and welding sheet metals. The oscillator has an exceptionally superior laser beam quality compared to conventional YAG laser oscillators, thus providing significantly improved machining capability. In addition, the laser beam of the oscillator can be efficiently transmitted through quartz optical fibers, enabling laser machines to be simplified and made more compact. This paper introduces the features of FANUC’s developed Slab type YAG laser oscillators and their applications. - Part II - All-solid-state lasers employing laser diodes (LD) as a source of pumping solid-state laser feature high efficiency, compactness, and high reliability. Thus, they are expected to provide a new generation of processing tools in various fields, especially in automobile and aircraft industries where great hopes are being placed on laser welding technology for steel plates and aluminum materials for which a significant growth in demand is expected. Also, in power plants, it is hoped that reliability and safety will be improved by using the laser welding technology. As in the above, the advent of high-power all-solid-state lasers may not only bring a great technological innovation to existing industry, but also create new industry. This is the background for this project, which has set its sights on the development of high-power, all-solid-state lasers with an average output of over 10㎾, an oscillation efficiency of over 20%, and a laser head volume of below 0.05㎥. FANUC Ltd. is responsible for the research and development of slab type lasers, and TOSHIBA Corp. far rod type lasers. By pumping slab type Nd: YAG crystal and by using quasi-continuous wave (QCW) type LD stacks, FANUC has already obtained an average output power of 1.7㎾, an optical conversion efficiency of 42%, and an electro-optical conversion efficiency of 16%. These conversion efficiencies are the best results the world has ever seen in the field of high-power all-solid-state lasers. TOSHIBA Corp. has also obtained an output power of 1.2㎾, an optical conversion efficiency of 30%, and an electro-optical conversion efficiency of 12%, by pumping the rod type Nd: YAG crystal by continuous wave (CW) type LD stacks. The laser power achieved by TOSHIBA Corp. is also a new world record in the field of rod type all-solid-state lasers. This report provides details of the above results and some information on future development plans.

  • PDF

A Study on Radiation Exposure using Nominal Risk Coefficients (명목위험계수를 활용한 방사선 피폭에 관한 연구)

  • Joo-Ah Lee;Jong-Gil Kwak;Cheol-Min Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.383-389
    • /
    • 2024
  • In this study, we aimed to analyze the probability of secondary cancer occurring in the abdomen, a normal organ, due to photoneutron exposure during intensity-modulated radiotherapy for prostate cancer. The design of the radiation treatment plan for prostate cancer was established as a daily prescription dose of 220 cGy, a total of 35 treatments, and 7700 cGy. The experimental equipment was a True Beam STx (Varian, USA) linear accelerator from Varian. The energy used in the experiment was 15 MV, and the treatment plan was designed so that the photoneutron dose would be generated within the planning target volume (PTV). The radiation treatment plan was an Eclipse System (Varian Ver. 10.0, USA), and the number of irradiation portals was set to 5 to 9. The irradiation angle was designed so that 95% of the prescription dose area was set to 0 to 320°, and the number of beamlets per irradiation portal was set to 100. The optically stimulated luminescence dosimeter used in this study to measure the dose of photoneutrons was designed to measure photoneutron doses by coating 6LiCO3 on a device containing aluminum oxide components. It was studied that there is a minimum of 7.07 to 11 cases per 1,000 people with secondary cancer due to the photoneutron dose to the abdomen during intensity-modulated radiotherapy. In this study, we studied the risk of secondary radiation dose that may occur during intensity-modulated radiotherapy, and we expect that this will be used as meaningful data related to the probabilistic effects of radiation in the future.

Fiber Optic Sensor for the Detection of Abnormal Structural Signals from Various Constructions (구조물 이상탐지용 광섬유 센서)

  • Kwon, Il-Bum;Lee, Youn-Jae;SeoMoon, Ung;Jo, Jae-Heung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.133-135
    • /
    • 2006
  • We propose and fabricate a novel fiber optic sensor for the detection of abnormal structural signals from various constructions. It's advantages are highly sensitive. small in dimension and electro-magnetic immune. Since this sensor was simply constructed with a single-mode fiber at infra-red wavelength and a laser-diode with the wavelength of 625 nm, the modes in the end of the optical fiber were not show as Gaussian distributed. So, we used the change of the mode distribution to get the sensor output by the external abnormal effect of structures. We investigated the resonance by performing the bending test of an aluminum beam attached with the fiber sensor. In the test, we could obtained a feasible signal to sense the abnormal condition of structures.

Studies on the Evaluation of Acoustical Properties of the Replaceable Species for Sounding Board by Vibration Test (진동시험(振動試驗)에 의한 대체향판수종(代替響板樹種)의 음향적(音響的) 성질(性質)의 평가(評價)에 관한 연구(硏究))

  • Kang, Chun-Won;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.71-80
    • /
    • 1991
  • This study was carried out to investigate replaceable species with the conventional sounding board sitka spruce. by comparing the dynamic properties such as density, dynamic Young's modulus and internal friction Dynamic Young's modulus. internal friction of longitudinal and radial direction measured in free mass-free boundary condition for facile vibration analysis and measured by forced vibration method. Dynamical properties of four species were measured on squared plate specimen that the four edges were hung vertically by threads and driven magnetically through an iron piece glued on the specimen, by the use of condenser microphone as vibration transducer, and analyzed by FFT analyzer. The results obtained were as follows: 1. Chaldni method using aluminum powder was proper to identify the vibration mode in the plate vibration and it was possible to verify the resornance mode. 2. It was considered that it was necessary to investigate the influence of adhesive part on the plate vibration when the sounding board was made by two or three small board adhesion. 3. It was considered that plate vibration method, which was a superior to the vibration test of beam, was suitable for selecting suounding board because dynamic Young's modulus and internal friction show different order according to longitudinal and radial direction. 4. Paulownia tomentosa Thunb.) Steudel has been considered to be replaceable species with sitka spruce because it has high dynamic Young's modulus compared with low density, low internal friction, and K value of Paulownia tomentosa (Thunb.) Steudel is greater than that of sitka spruce.

  • PDF