• Title/Summary/Keyword: Aluminum Spine Phantom

Search Result 4, Processing Time 0.024 seconds

The Bone Mineral Density Value According to the Operating Time of the Dual Energy X-ray (이중 에너지 엑스레이 흡수기의 가동 시간에 따른 골밀도 값의 평가)

  • Lee, Hae-Jung;Kim, Ho-Sung;Kim, Eun-Hye
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • Purpose: Recently, the performance of the X-ray tube was very much improved by the power generation of the technology. However, the overload of equipment is occurred by the increment of the equipment operating time according to the increment of the examination number of cases. The X-ray dose can change by heat occurrence of the X-ray tube due to this. Moreover, the change of the bone mineral density value is possible to occur. Therefore, We tries to whether the change of the bone mineral density value of each equipment according to the difference of the examination number of cases and operating time occur or not. Materials and Methods: The BMD value was measured by the Aluminum Spine Phantom and the European Spine Phantom in each equipment, in order to find out about the difference of the time general classification bone mineral density value by using the Dual energy X-ray absorptiometry. And after scanning each phantom by using X-ray dose meter (Unfors Mult-O-Meter), a dose was measured by the same condition. As to, an average and standard deviation were found and the change of each equipment much BMD value was compared and it evaluated. Results: $Mean{\pm}SD$ of each equipment by using the Aluminum Spine Phantom, A equipment was $1.174{\pm}0.002$, $1.171{\pm}0.005$, $1.173{\pm}0.005$, B equipment was $1.186{\pm}0.003$, $1.187{\pm}0.003$, $1.185{\pm}0.003$, C equipment was $1.180{\pm}0.003$, $1.182{\pm}0.004$, $1.183{\pm}0.002$, D equipment was $1.188{\pm}0.004$, $1.185{\pm}0.003$, $1.185{\pm}0.004$. By using the European Spine Phantom, A equipment was $1.143{\pm}0.006$, $1.153{\pm}0.009$, $1.161{\pm}0.003$, B equipment was $1.134{\pm}0.004$, $1.13{\pm}0.008$, $1.127{\pm}0.015$, C equipment was $1.143{\pm}0.006$, $1.134{\pm}0.01$, $1.133{\pm}0.006$, D equipment was $1.14{\pm}0.001$, $1.122{\pm}0.002$, $1.131{\pm}0.008$, altogether included in the normal range. Conclusion: There was no significant change of the BMD value of using a phantom by time zones. Therefore, if the quality control is made to use the extent management method of the equipment for beginning in the present application, the reliability of the BMD equipment will be able to be enhanced.

  • PDF

The Influences of Bowel Condition with Lumbar Spine BMD Measurement (요추부 골밀도 측정 시 장내 변화가 골밀도에 미치는 영향)

  • Yoon, Joon;Kim, Yun-Min;Lee, Hoo-Min;Lee, Jung Min;Kwon, Soon-Mu;Cho, Hyung-Wook;Kang, Yeong-Han;Kim, Boo-Soon;Kim, Jung-Soo
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.273-278
    • /
    • 2014
  • Bone density measurement use of diagnosis of osteoporosis and it is an important indicator for treatment as well as prevention. But errors in degree of precision of BMD can be occurred by status of patient, bone densitometer and radiological technologist. Therefore the author evaluated that how BMD changes according to the condition of the patient. As Lumbar region, which could lead to substantial effects on bone density by diverse factors such as the water, food, intentional bowels. We recognized a change of bone mineral density in accordance with the height of the water tank and in the presence or absence of the gas using the Aluminum Spine Phantom. We also figured out the influence of bone mineral density by increasing the water and food into a target on the volunteers. Measured bone mineral density through Aluminum Spine Phantom had statistically significant difference accordance with increasing the height of water tank(p=0.026). There was no significant difference in BMD according to the existence of the bowl gas(p=0.587). There was no significant difference in a study of six people targeted volunteers in the presence or absence of the food(p=0.812). And also there was no significant difference according to the existence of water(p=0.618). If it is not difficult to recognize the surround of bone in measuring BMD of lumbar bone, it is not the factor which has the great effect on bone mineral density whether the test is after endoscopic examination of large intestine and patient's fast or not.

Dose Reduction of the Adolescent Female Breast during Scoliosis Radiography (청소년기 여성의 척추측만증 검사에서 유방입사선량 저감효과)

  • Jin, Gye Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.373-379
    • /
    • 2018
  • The purpose of this study was to investigate quantitative data on the difference in breast entrance surface dose with changes in focus-film distance, patient posture (anteroposterior-posteroanterior), thoracic wall thickness, rib bone thickness, lung tissue thickness, tube voltage, and high-voltage rectification method in Whole Spine Scanography, which is necessary for the treatment of scoliosis patients. Given a tube voltage of 90 kVp, kerma of 0.1 mGy, focus-film distance of 260 cm, tube voltage ripple rate of 0, filter thickness of 3.5 mm, and thickness of patient's thoracic wall of 120 mm as an X-ray exposure condition, from the simulation results using the Simulation of X-ray Spectra program to confirm the reduction effect of breast entrance surface dose according to the patient's posture (AP and PA), there was a dose reduction effect in aluminum filter thickness of 2.6 times at 3.5 mm, 25.7 times the thoracic wall thickness at 120 mm, 1.43 times higher tube voltage, and 0 to 1.14 times the tube voltage ripple rate. The total dose reduction effect was about 109 times. In order to confirm the dose reduction effect of RANDO phantom posture (AP and PA), from the results of the measurements taken under the conditions that the focus-film distance was 260 cm, the tube voltage was 90 kVp, the tube current was 270 mA, the exposure time was 0.31 sec, and the tube voltage ripple rate of X-ray generators was 0, the entrance surface dose reduction effect of the breast in the PA position was found to be 20.56 times lower than that of the AP position.

Study of Factors Controlling Exposure Dose and Image Quality of C-arm in Operation Room according to Detector Size of It (Mainly L-Spine AP Study) (수술 중 C-Arm Neutral AP 검사 시 조절인자에 따른 피폭선량 및 화질비교(L-Spine AP검사를 기준으로))

  • CHOI, Sung-Hyun;JO, Hwang-Woo;Dong, Kyung-Rae;Chung, Woon-Kwan;Choi, Eun-Jin;Song, Ha-jin
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: Time of operation has been reduced and accuracy of operation has been improved since C-arm, which offer real-time image of patient, was introduced in operation room. However, because of the contamination of patient, C-arm could not be used more appropriately. Therefore, this study is to know factors of controlling exposure dose, image quality and the exposed dose of health professional in operation room. Materials and methods: Height of Wilson frame (bed for operation) was fixed at 130 cm. Then, Model 76-2 Phantom, which was set by assembling manual of Fluke Company, was set on the bed. Head/Spine Fluoroscopy AEC mode was set for exposure condition. According to detector size of C-arm, the absorbed dose per min was measured in the 7 steps OFD (cm) from 10 cm to 40 cm (10, 15, 20, 25, 30, 35, 40 cm). In each step of OFD, the absorbed dose per min of same diameter of collimation was measured. Moreover, using Nero MAX Model 8000, exposure dose per min was measured according to 3 step of distance from detector (20 cm, 60 cm, 100 cm). Finally, resolution was measured by CDRH Disc Phantom and magnification of each OFD was measured by aluminum stick bar. Result: According to detector size of C-arm, difference of absorbed dose shows that the dose of 20 cm OFD is 1.750 times higher than the dose of 40 cm OFD. It means that the C-arm, which has smaller size of detector, shows the bigger difference of absorbed dose per min (p<0.05). In the difference of absorbed dose in the same step of OFD (from 20 cm to 40 cm), the absorbed dose of 9 inch detect or C-arm was 1.370 times higher than 12 inch' s (p<0.05). When OFD was set to 20 cm OFD, the absorbed dose of non-collimation case was approximately 0.816 times lower than the absorbed dose of collimation cases (p<0.05). When the distance was 20 cm from detector, exposed does includes first-ray and scatter-ray. When the distance was 60 cm and 100 cm from detector, exposed does includes just scatter-ray. So, there was the 2.200 times difference of absorbed does. Finally, when OFD was increased, spatial resolution was 4 to 5 step was increased. However, low contrast resolution was not relative. Moreover, there was 1.363 times difference of magnification (p<0.05). Conclusion: When C-Arm is used, avoiding contamination of patient is more important factor than reducing exposed dose of health professional in operation room. Just controlling exposure time is just way to reduce the exposed does of workers. However, in the case, non-probability influence could be occurred. Therefore, this study proved that the exposed dose will be reduced if the factors such as using small detector size of C-arm, setting OFD from 20 cm to 25 cm and non-collimating. Moreover, dose management of C-arm in the non-interesting area will be considered additionally.