• Title/Summary/Keyword: Aluminum Oxide

Search Result 902, Processing Time 0.024 seconds

Anodic Oxidation (양극 산화)

  • 노해용
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.6
    • /
    • pp.16-23
    • /
    • 2000
  • Anodizing processes is the conversion of the aluminum surface to aluminum oxide while the part is the anode in an electrolytic cell. The object of the anodizing was increased corrosion resistant, paint adhesion and was provided unique, decorative colors. Many electrolytes, under different conditions, have been used for the anodic oxidation of alumminum and its alloys. This paper deals with the procedures used in the anodic oxidation of aluminum and its alloys, the nature and properties of the oxide films, their uses and anodizing equipment and process control.

  • PDF

Preparation of Alumina and Amorphous Silica from Clay Minerals (점토광물로부터 알루미나 및 비정질 실리카 제조에 관한 연구)

  • 박희찬;조원제;강효경;손명모
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.81-90
    • /
    • 1989
  • High purity alumina and amorphous silica were prepared from Ha-dong kaolin by means of appliance of sulfuric acid. The effect of sulfuric acid concentration, reaction temperature and reaction time on the formation of aluminum sulfate was investigated. The precipitation conditions ofaluminum sulfate from the sulfuric acid solution with ethanol and ammonium hydroxide were deteremined. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum oxide powder was 85.0 percent. Alumina powder was prepared by calcination of the precipitates, and its purity was 99.0 percent.

  • PDF

Application of Magnetic Assisted Polishing for ELID Ground Surface of Aluminum Oxide Ceramics (알루미나 세라믹스 ELID연삭면의 자기연마 가공 특성)

  • Lee, Yong-Chul;Jung, Myung-Won;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1259-1264
    • /
    • 2013
  • This study has focused on the application of magnetic assisted polishing for ELID ground surface of aluminum oxide ceramics. Aluminum oxide ceramics has been widely used as advanced materials for electric, optic, mechanic, chemical usage and so on. In this study, ELID grinding and magnetic assisted polishing technology was adopted for high-effective manufacturing and high quality surface of ceramic parts. The characteristic of MAP machining have been evaluated by the value of surface roughness and surface profile before and after magnetic assisted polishing. As the results of experiments, the surface roughness after magnetic assisted polishing has shown a significant improvement and the surface roughness was more improved when the feed rate of tool became slow.

Dielectric Breakdown Behavior of Anodic Oxide Films Formed on Pure Aluminum in Sulfuric Acid and Oxalic Acid Electrolytes

  • Hien Van Pham;Duyoung Kwon;Juseok Kim;Sungmo Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.169-179
    • /
    • 2023
  • This work studies dielectric breakdown behavior of AAO (anodic aluminum oxide) films formed on pure aluminum at a constant current density in 5 ~ 20 vol.% sulfuric acid (SA) and 2 ~ 8 wt.% oxalic acid (OA) solutions. It was observed that dielectric breakdown voltage of AAO film with the same thickness increased with increasing concentration of both SA and OA solutions up to 15 vol.% and 6 wt.%, respectively, above which it decreased slightly. The dielectric breakdown resistance of the OA films appeared to be superior to that of SA films. After dielectric breakdown test, cracks and a hole were observed. The crack length increased with increasing SA film thickness but it did not increase with increasing OA film thickness. To explain the reason why shorter cracks formed on the OA films than the SA films after dielectric breakdown test, the generation of tensile stresses at the oxide/metal interface was discussed in relation to porosity of AAO films obtained from cross-sectional morphologies.

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.