• 제목/요약/키워드: Aluminum Nitride (AlN)

검색결과 143건 처리시간 0.029초

Preparation of Aluminum Nitride Powders and Whiskers Using Aluminum(III) Salts as a Precursor

  • Jung, Woo-Sik;Chae, Seen-Ae
    • 한국세라믹학회지
    • /
    • 제40권8호
    • /
    • pp.720-724
    • /
    • 2003
  • Aluminum nitride (AlN) powders were synthesized by using a mixture of an aluminum nitrate or sulfate salt and carbon (mole ratio of $Al^{3+}$ to carbon=L : 30). The AlN was obtained by calcining the mixture under a flow of nitrogen in the temperature range 1100-1$600^{\circ}C$ and then burning out the residual carbon. The process of conversion of the salt to AlN was monitored by XRD and $^{27}$ Al magic-angle spinning (MAS) NMR spectroscopy. The salt decomposed to ${\gamma}$-alumina and then converted to AlN without phase transition from ${\gamma}$-to-$\alpha$-alumina. $^{27}$ Al MAS NMR spectroscopy shows that the formation of AlN commenced at 110$0^{\circ}C$. AlN powders obtained from the sulfate salt were superior to those from the nitrate salt in terms of homogeneity and crystallinity. A very small amount of AlN whiskers was obtained by calcining a mixture of an aluminum sulfate salt and carbon at 115$0^{\circ}C$ for 40 h, and the growth of the whiskers is well explained by the particle-to-particle self-assembly mechanism.

AlOOH로부터 AlN분말의 합성 (Synthesis of AlN Powders from AlOOH)

  • 이재범;김선태
    • 한국재료학회지
    • /
    • 제16권12호
    • /
    • pp.771-776
    • /
    • 2006
  • In this study, we report a method to synthesize the aluminum nitride (AlN) powders from aluminum oxyhydroxide (AlOOH). AlOOH powders were prepared from the aluminum hydroxide ($Al(OH)_3$) by heattreatment at the reaction temperature of $350^{\circ}C$. Simple heat treatment of AlOOH in the flow of $NH_3$ gas leads to the formation of hexagonal AlN powders through intermediate conversion of ${\delta}-,\;{\gamma}-$ and ${\alpha}-Al_2O_3$. The FTIR transmission spectra show a broad peak related to Al-N bonds centered around 690 $cm^{-1}$ confirming the presence of AlN. The major peaks in Raman spectra were observed in 250 $cm^{-1}$ and 659 $cm^{-1}$. From the results, synthesized powders from the AlOOH powders were confirmed AlN powders.

An Alternative X-ray Diffraction Analysis for Comprehensive Determination of Structural Properties in Compositionally Graded Strained AlGaN Epilayers

  • Das, Palash;Jana, Sanjay Kumar;Halder, Nripendra N.;Mallik, S.;Mahato, S.S.;Panda, A.K.;Chow, Peter P.;Biswas, Dhrubes
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.784-792
    • /
    • 2018
  • In this letter, a standard deviation based optimization technique has been applied on High Resolution X-ray Diffraction symmetric and asymmetric scan results to accurately determine the Aluminum molar fraction and lattice relaxation of Molecular Beam Epitaxy grown compositionally graded Aluminum Gallium Nitride (AlGaN)/Aluminum Nitride/Gallium Nitride (GaN) heterostructures. Mathews-Blakeslee critical thickness model has been applied in an alternative way to determine the partially relaxed AlGaN epilayer thicknesses. The coupling coefficient determination has been presented in a different perspective involving sample tilt method by off set between the asymmetric planes of GaN and AlGaN. Sample tilt is further increased to determine mosaic tilt ranging between $0.01^{\circ}$ and $0.1^{\circ}$.

Al-N2와 Al-N2-AlN계에서 고온자전연소법에 의한 AlN 합성 (AlN preparation by Self-propagation High-temperature Synthesis (SHS) in Al-N2 and Al-N2-AIN system)

  • 이재령;이익규;안종관;김동진;안양규;정헌생
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.294-300
    • /
    • 2004
  • This study for preparation of aluminum nitride (AlN) with high purity was carried out by self-propagating high-temperature synthesis method in two different systems, $Al-N_{2}$ and $Al-N_{2}$-AlN, with the change of nitrogen gas pressure and dilution factor. On the occasion of $Al-N_{2}$ system, unreacted aluminum was detected in the product in spite of high nitrogen pressure, 10 MPa, This may be caused by obstructing nitrogen gas flow to inner part of molten and agglomerate of aluminum, formed in pre-heating zone. In $Al-N_{2}$-AlN system, AlN with a purity of 95% or ever can be prepared in the condition of $f_{Dil}\geq0.5$, $P_{N_{2}}\geq$ 1 MPa, and the purity can be elevated to 98% over in the condition of $f_{Dil}$ = 0.7 and $P_{N_{2}}$ = 10 MPa.

펄스레이저법으로 증착 제조된 AlN박막의 타겟 효과 (Effect of Targets on Synthesis of Aluminum Nitride Thin Films Deposited by Pulsed Laser Deposition)

  • 정준기;하태권
    • 소성∙가공
    • /
    • 제29권1호
    • /
    • pp.44-48
    • /
    • 2020
  • Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.

금속알루미늄으로부터 질화알루미늄의 합성 (Synthesis of Aluminum Nitride from Metal Aluminum Powders)

  • 최상욱;이승제
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.80-86
    • /
    • 1985
  • Aluminum nitride (AlN) was synthesized from aluminum (Al) powders as a starting material in the tempe-rature range of 450~1, 15$0^{\circ}C$ in the presence of 90% $N_2$-10%$H_2$ gases. The thermogravimentric analysis showed that the nitridation of Al powders started at about 43$0^{\circ}C$ and escalated greatly from 53$0^{\circ}C$. The scanning electron microcopic observation revealed that AlN crystals were different in shape with varying temperature of nitridation. The crystals of AlN which were formed in the lower temperature than the melting point of Al were spherical while those of AlN in the higher temperature were fibrous. The yield of AlN was determined quantitatively by both XRD method and weight gain between before and after the nitridation of Al compacts. It was considered that the former was available for the specimen which was made in the high nitriding temperature. But the latter was unavilable for the same one probably because of the volatile loss of Al in the higher temperature.

  • PDF

Fabrication of Aluminum/Aluminum Nitride Composites by Reactive Mechanical Alloying

  • Yu, Seung-Hoon;Shin, Kwang-Seon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1294-1295
    • /
    • 2006
  • Various reactions and the in-situ formation of new phases can occur during the mechanical alloying process. In the present study, Al powders were strengthened by AlN, using the in-situ processing technique during mechanical alloying. Differential thermal analysis and X-ray diffraction studies were carried out in order to examine the formation behavior of AlN. It was found that the precursors of AlN were formed in the Al powders and transformed to AlN at temperatures above $600^{\circ}C$. The hot extrusion process was utilized to consolidate the composite powders. The microstructure of the extrusions was examined by SEM and TEM. In order to investigate the mechanical properties of the extrusions, compression tests and hardness measurements were carried out. It was found that the mechanical properties and the thermal stability of the Al/AlN composites were significantly greater than those of conventional Al matrix composites.

  • PDF

탄소환원질화법을 이용한 AIN Whisker의 합성 I. 불화물 첨가의 영향 (Synthesis of Aluminum Nitride Whisker by Carbothermal Reaction I. Effect of Fluoride Addition)

  • 양성구;강종봉
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.118-124
    • /
    • 2004
  • 탄소환원질화법에 의해 합성된 질화알루미늄의 물성은 출발물질의 종류, 액상$.$기상 반응물질의 양, 분위기 그리고 합성온도에 따라서 많은 차이를 나타내었다 질화알루미늄 합성을 위하여 Al원으로는 $\alpha$-A1$_2$O$_3$를 사용하였고 환원제로는 카본 블랙을 사용하였으며, 기상반응을 유도하기 위하여 AlF$_3$를 사용하여 고순도 질소분위기에서 실험을 행하였다. 또한 액상반응 시 미세구조상의 변화를 확인하기 위하여 금속 알루미늄을 첨가하여 실험을 행하였다. 질화알루미늄이 생성과 침상형 휘스커상의 형상은 1$600^{\circ}C$의 온도에서 가장 잘 나타났으며 열처리 온도의 상승은 오히려 휘스커상의 형성을 방해하고 있음을 보여주었다. 침상형 휘스커의 합성에 가장 큰 영향을 주는 것은 기상반응을 일으키는 AlF$_3$ 첨가이며, AlF$_3$의 첨가량이 증가함에 따라 침상형 휘스커상을 확인하였다. 액상반응을 위한 금속 알루미늄 첨가는 전체의 15wt%까지는 침상형 휘스커가 증가하고 있음을 나타내었으나 l5wt% 이상으로 첨가하는 경우 오히려 휘스커가 감소하는 것으로 나타났다.

질소 분위기에서 (NH4)[Al(edta)]·2H2O 착물으로부터 질화알루미늄 분말 및 휘스커의 합성 (Synthesis of Aluminum Nitride Powers and Whiskers from a (NH4)[Al(edta)]·2H2O Complex under a Flow of Nitrogen)

  • 정우식
    • 한국세라믹학회지
    • /
    • 제39권3호
    • /
    • pp.272-277
    • /
    • 2002
  • 전구체로 ($NH_4)[Al(ethylenediaminetetraacetate)]{\cdot}2H_2O$ 착물을 이용한 수정된 열탄소환원질화법으로 질화알루미늄(AlN) 분말과 휘스커를 합성하였다. 이 분말은 질소분위기에서 별도의 환원용 탄소를 혼합하지 않고 1200$^{\circ}$C에서 1500$^{\circ}$C까지의 온도에서 하소시킨 다름 잔류탄소를 태워 버림으로써 얻어졌다. 이 질화과정을 Al-27 마법각 스핀 핵자기공명, 적외선 분광법 및 X-선 회절법으로 연구했다. 전구체 착물은 열분해되어 ${\rho}$-알루미나와 ${\gamma}$-알루미나로 되었다가 ${\gamma}-{\alpha}$알루미나 전이없이 AlN으로 바뀌었다. ${\gamma}$-알루미나가 AlN으로 바뀌면서 분말의 형상이 유지되는 것으로 보아 이 변환과정에서의 중간체는 알루미늄이나 aluminum suboxides와 같은 기체상이 아니고, 고체상의 $AlO_xN_y$임을 알 수 있다. (0001) 사파이어를 이용하면 AlN 휘스커를 합성할 수 있다.

Al합금에서 질소이온주입에 의한 질화물 형성과 기계적 특성 향상 (The Formation of Nitride and Enhancement of Mechanical Properties of Al Alloy by Nitrogen Implantation)

  • 정재필;이재상;김계령;최병호
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.235-239
    • /
    • 2006
  • The aluminum nitride(AlN) layer on Al7075 substrate has been formed through nitrogen ion implantation process. The implantation process was performed under the conditions : 100 keV energy, total ion dose up to $2{\times}10^{18}\;ions/cm^2$. XRD analysis showed that aluminum nitride layers were formed by nitrogen implantation. The formation of Aluminum nitride enhanced surface hardness up to 265HK(0.02 N) from 150HK(0.02 N) for the unimplanted specimen. Micro-Knoop hardness test showed that wear resistance was improved about 2 times for nitrogen implanted specimens above $5\;{\times}\;10^{17}\;ions/cm^2$. The friction coefficient was measured by Ball-on-disc type wear tester and was decreased to 1/3 with increasing total nitrogen ion dose up to $1\;{\times}\;10^{18}ions/cm^2$. The enhancement of mechanical properties was observed to be closely associated with AlN formation. AES analysis showed that the maximum concentration of nitrogen increased as ion dose increased until $5\;{\times}\;10^{17}\;ions/cm^2$.