• 제목/요약/키워드: Aluminum Laser Welding

검색결과 97건 처리시간 0.037초

리튬이온전지의 전해액 주입구 볼에 대한 Nd:YAG 레이저 용접성 (The Weldability of Aluminum Ball in Electrolyte Injection Hole by Nd:YAG Laser)

  • 김종도;유승조;김장수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.25-26
    • /
    • 2005
  • This study suggested the occurrence source of weld-defects and its solution methods in a welding of Electrolyte injection hole by pulsed Nd:YAG laser. In experiment, the ramp down was used in order that solidification crack was removed. Furthermore, shrinkage stress and heat input were reduced by changing of weld trajectory and defocused distance. As a results of a experiment, a sound weld bead shape and crack-free weld bead can be obtained.

  • PDF

일체주조법, 레이저용접법, 납착법, 방전가공법에 의해 제작된 임플란트 보철물의 적합도에 관한 연구 (FIT OF IMPLANT FRAMEWORKS FABRICATED BY ONE-PIECE CASTING, LASER WELDING, SOLDERING, AND ELECTRIC DISCHARGE MACHINING)

  • 설영훈;정창모;전영찬;강성원
    • 대한치과보철학회지
    • /
    • 제40권2호
    • /
    • pp.156-171
    • /
    • 2002
  • The purpose of this study was to measure and compare the strains produced by screw-tightening implant frameworks fabricated by aye different fabrication methods; (1) one-piece cast using plastic sleeve, (2) one-piece cast using gold cylinder, (3) laser welding, (4) soldering, and (5) electrical discharge machining, and also to measure and compare the strains produced when the order of screw tightening was changed A research model incorporating eighteen strain gages was made to measure the fit of implant frameworks in three dimensions. Three implants aligned in an arc were fixed on the top ends of the L-shape aluminum bars of the research model, and standard abutments were joined to the implants with abutment screws. Five types of implant framework were placed on the abutments and screwed by a torque wrench using 10 Ncm. Under the conditions of this study, the following conclusions were drawn: 1. The electrical discharge machining group showed the smallest magnitude of strain, followed by the soldering group, the laser welding group, the one-piece cast group using gold cylinder, and the one-piece cast group using plastic sleeve. However, among the magnitude of strain for the remaining groups except the electrical discharge machining group, there were not significant differences. 2. When the order of screw tightening was changed, there were not significant differences in the magnitude of strain. 3. In comparison with the electrical discharge machining group, the laser welding group and the one-piece cast groups showed greater horizontal distortion and the soldering group showed greater horizontal and vertical distortion.

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

Part I Advantages re Applications of Slab type YAG Laser PartII R&D status of All Solid-State Laser in JAPAN

  • Iehisa, Nobuaki
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 1998년도 추계학술발표대회 초록개요집
    • /
    • pp.0-0
    • /
    • 1998
  • -Part I- As market needs become more various, the production of smaller quantities of a wider variety of products becomes increasingly important. In addition, in order to meet demands for more efficient production, long-term unmanned factory operation is prevailing at a remarkable pace. Within this context, laser machines are gaining increasing popularity for use in applications such as cutting and welding metallic and ceramic materials. FANUC supplies four models of $CO_2$ laser oscillators with laser power ranging from 1.5㎾ to 6㎾ on an OEM basis to machine tool builders. However, FANUC has been requested to produce laser oscillators that allow more compact and lower-cost laser machines to be built. To meet such demands, FANUC has developed six models of Slab type YAG laser oscillators with output power ranging from 150W to 2㎾. These oscillators are designed mainly fur cutting and welding sheet metals. The oscillator has an exceptionally superior laser beam quality compared to conventional YAG laser oscillators, thus providing significantly improved machining capability. In addition, the laser beam of the oscillator can be efficiently transmitted through quartz optical fibers, enabling laser machines to be simplified and made more compact. This paper introduces the features of FANUC’s developed Slab type YAG laser oscillators and their applications. - Part II - All-solid-state lasers employing laser diodes (LD) as a source of pumping solid-state laser feature high efficiency, compactness, and high reliability. Thus, they are expected to provide a new generation of processing tools in various fields, especially in automobile and aircraft industries where great hopes are being placed on laser welding technology for steel plates and aluminum materials for which a significant growth in demand is expected. Also, in power plants, it is hoped that reliability and safety will be improved by using the laser welding technology. As in the above, the advent of high-power all-solid-state lasers may not only bring a great technological innovation to existing industry, but also create new industry. This is the background for this project, which has set its sights on the development of high-power, all-solid-state lasers with an average output of over 10㎾, an oscillation efficiency of over 20%, and a laser head volume of below 0.05㎥. FANUC Ltd. is responsible for the research and development of slab type lasers, and TOSHIBA Corp. far rod type lasers. By pumping slab type Nd: YAG crystal and by using quasi-continuous wave (QCW) type LD stacks, FANUC has already obtained an average output power of 1.7㎾, an optical conversion efficiency of 42%, and an electro-optical conversion efficiency of 16%. These conversion efficiencies are the best results the world has ever seen in the field of high-power all-solid-state lasers. TOSHIBA Corp. has also obtained an output power of 1.2㎾, an optical conversion efficiency of 30%, and an electro-optical conversion efficiency of 12%, by pumping the rod type Nd: YAG crystal by continuous wave (CW) type LD stacks. The laser power achieved by TOSHIBA Corp. is also a new world record in the field of rod type all-solid-state lasers. This report provides details of the above results and some information on future development plans.

  • PDF

공정 변수에 따른 Al 모재와 Fe계 합금 분말의 레이저 오버레이층 거동 (Effect of Process Parameters on Laser Overlay Behavior of Fe-based Alloy Powder on Aluminum Substrate)

  • 유연곤;강남현;김철희;김정한;김목순
    • Journal of Welding and Joining
    • /
    • 제25권1호
    • /
    • pp.30-36
    • /
    • 2007
  • A joining of dissimilar metal combination faces significant problems such as poor strength and cracking associated with brittle intermetallic compounds(IMC) formed. An application of laser allows low heat input; leading to less dilution and smaller heat affected zone. The $CO_2$ laser overlay was conducted on an AC2B alloy with feeding Fe-based powders. The overlay area was significantly influenced from the travel velocity rather than the powder feeding rate. The interface between the overlay and substrate consisted of the hard and brittle IMC($FeAl_3,\;Fe_3Al,\;Fe_2Al_5$), which initiating and propagating the crack. The reciprocating test for the slide wear was conducted on a multi-pass overlay experiment. Comparing with the multi-pass overlay with no overlap, the overlay with 50% overlap showed better wear resistance.

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

레이저 응용계측에 의한 용접부 스트레인 측정 (The Strain Measurement of Butt Welded Zone by the Laser System)

  • 성백섭;차용훈;박창언;김일수;김덕중;이연신;김인주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.119-124
    • /
    • 2001
  • Currently knowledge of strain in welds has mainly been obtained form strain gaging method:; that is directly attaching most of the material to the gate. The very few non-contact method are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The dissertation is on the measurement of the strain caused by the characteristics and the temperature changes of the TIG welded zone which is used with 3D ESPI system that is functionally modified through the laser ESPI system. This system employed the aluminum sheet-metal which are mainly used for the steel plate such as for the electronics, chemisry, food instrument and electronic appliances.

  • PDF

레이저 계측에 의한 맞대기 용접부의 스트레인 측정 (The Strain Measurement of Butt Welded Zone by the Laser System)

  • 성백섭;차용훈;박창언;김일수;김덕중;이연신;손준식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.155-161
    • /
    • 2001
  • Currently knowledge of strain in welds has mainly been obtained from strain gaging method; that is directly attaching most of the material to the gage. The very few non-contact method are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The dissertation is on the measurement of the strain caused by the characteristics and the temperature changes of the TIG welded zone which is used with 3D ESPI system that is functionally modified through the laser ESPI system. This system employed the aluminum sheet-metal which are mainly used for the steel plate such as for the electronics, chemistry, food instrument and electronic appliances.

  • PDF