• Title/Summary/Keyword: Aluminum Knuckle

Search Result 11, Processing Time 0.035 seconds

Durability Performance Evaluation of an Aluminum Knuckle using Virtual Testing Method (가상시험법을 이용한 알루미늄 너클의 내구수명 평가)

  • Ko, Han-Young;Choi, Gyoo-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • Durability performance evaluation technology using Virtual Testing Method is a new concept of a vehicle design, which can reduce the automotive components design period and cost. In this paper, the fatigue life of an aluminum knuckle of a passenger car is evaluated using virtual testing method. The flexible multibody dynamic model of a front half car module is generated and solved with service loads which are measured from Belgian roads. Using a multibody dynamic analysis software, the flexible multibody dynamic simulation of a half car model is carried out and the dynamic stress profile of an aluminum knuckle is acquired. The stress profile is exported to a fatigue analysis software and durability performance of an aluminum knuckle is evaluated.

Measurements of Micro-Defects in the Aluminum Thixoformed Part using Computed Tomography(CT) Technology (CT를 이용한 알루미늄 반응고 성형품의 미세 결함 측정)

  • Lee, S.Y.;Kim, C.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.422-427
    • /
    • 2009
  • Computed tomography(CT) has been applied to measure micro-defects in the aluminum knuckle parts manufactured by the thixoforming process. 6061 aluminum alloys were used to form knuckle samples in the semi-solid temperature after the SIMA processing of billets. Tensile specimens were cut from the different locations in a thixoformed knuckle. The size and the distribution of forming defects in tensile specimens were analyzed using CT scanning and image analysis technology before tensile tests. It has been qualitatively shown that the stress-strain curves were significantly affected by the size and the distribution of forming defects although the defect sizes lie in the range of micro-meters.

Light-Weight Design of Automotive Knuckle by Using CAE (Computer Aided Engineering) (CAE 해석을 이용한 자동차용 AA6061 Knuckle의 경량화 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.663-668
    • /
    • 2016
  • Increasing fuel economy and reducing air pollution have been unavoidable issues in the development of new cars, and one of the important methods is decreasing vehicle weight. Weight can be reduced by using lightweight materials such as aluminum alloy. Dynamic stiffness analysis was performed and compared for different materials for the knuckle for a car. The dynamic stiffness of 6061 aluminum alloy was about 30% higher than that of FCD600 cast iron. Usually, materials that have high dynamic stiffness show excellent vibration resistance because the dynamic stiffness can affect the vibration characteristics. In order to design a lighter and more reliable chassis component using 6061 aluminum alloy (AA6061-T6), a new knuckle shape is suggested by adding section ribs to an existing knuckle model. The effect of each design change on the reliability and component weight was investigated using computer aided engineering (CAE).

Shape Optimization Design of the Knuckle using the Orthogonal Array and the Finite Element Analysis (직교배열표와 유한요소해석을 이용한 너클의 형상최적설계)

  • 박영철;이권희;이동화;이강영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-144
    • /
    • 2003
  • Recently, the weight reduction of vehicle influences its environment problems and performances. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. In this study, the shape optimization using an orthogonal array is performed to determine the design of the knuckle which is a part of suspension system. With the material of the weight reduction was achieved by satisfying the constraints of a strength requirement. The orthogonal array of $L_{18}$ is introduced to find the optimum design variables that considers the shape of the knuckle. The characteristic function composed of the objective and the construct is defined to the feasibility. Comparing to the weight of the initial design with steel materials that of optimum design with aluminum alloy material is reduced by 60%.

A Study on the Shape Optimization Design of the Knuckle by the Finite Element Analysis (유한요소해석에 의한 Knuckle의 최적형상설계에 관한 연구)

  • Rha, W.Y.;Lee, S.H.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. It is required more precise analysis for practical load because of complexities and varieties of vehicle structure. In this study, the shape optimization using a FEA is performed to determine the design of the knuckle. The size optimization is carried out to find thickness while the stiffness constraints are satisfied. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

  • PDF

Post-heat Treatment Properties of Thixoformed of A357 Al Alloy Product (반응고 성형된 A357 Al 합금 성형품의 후열처리 특성)

  • Choi, W.H.;Shin, P.W.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Recently, semi-solid forming (SSF) Process has been applied in many automobile parts for improved weight reduction, better environmental protection and energy savings. SSF process was well developed for high volume production of light weight aluminum components. In this paper, knuckle has been manufactured by SSF and then the microstructures and mechanical properties were investigated followed by various heat-treatment conditions. It was found that the examined microstructure was equiaxed at the whole cross-section area.

Knuckle Design of Hand-made Electric Vehicle Based on Vehicle Dynamics Simulation (차량 동역학 모델 해석에 기반한 자작 전기차 너클의 설계)

  • Lee, C.S.;Choi, H.S.;Kwon, Y.S.;Lee, T.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.947-956
    • /
    • 2018
  • This research has been conducted to design upright parts of hand-made vehicles with the purpose of reducing material and machining cost while ensuring structural safety. Aluminum knuckles were modelled with three parts in order to enhance design flexibility as well as to reduce CNC machining cost. A vehicle model was constructed in CAD program and simulated in ADAMS View in order to estimate joint forces developing during 20 degree step steering condition at 60km/h. The joint forces obtained in the vehicle dynamics simulation were used for the structural analysis in ANSYS and dimensions of knuckle parts were adjusted until the lowest safety factor reached 2.0. The weight of knuckle decreased by 50% compared to the previous version that was designed without the structural analysis. The overall manufacturing cost decreased by 33% due to the reduction in the material as well as the CNC machining effort.

The Effects of Forming Defects on the Mechanical Properties of Thixoformed Aluminum Parts for Automobile (반응고 성형된 자동차용 알루미늄 합금 부품의 기계적 강도 특성에 미치는 성형 결함의 영향)

  • Kim, C.H.;Choi, B.H.;Lee, S.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.293-295
    • /
    • 2007
  • The thixoforming process become important for forming automobile parts. But, the thixoforming process cannot still prevent to forming defects such as pores and shrinkage which reduce mechanical properties of automobile parts. Therefore, it is necessary to analyze the correlation between forming defects and mechanical properties. However, it is difficult to get data about relations between mechanical properties and forming defects in thixoformed aluminum alloy parts. In this study, three parts of aluminum thixoformed knuckle have been analyzed using tensile test and computer tomography(CT scan). Experimental results showed that the elongation properties of thixoformed aluminum parts were significantly dependent on size and number of forming defects.

  • PDF

Numerical and Experimental Study of Semi-solid A356 Aluminum Alloy in Rheo-Forging process

  • Kim, H.H.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery.

  • PDF

Mechanical Properties of Thixoformed Aluminum Suspension Parts for Electric Vehicles (전기자동차용 알루미늄 서스펜션 반응고 성형품의 기계적 특성)

  • Kang B. M.;Park B. S.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.240-243
    • /
    • 2001
  • Recently, many automobile parts produced by semi-solid forming(SSF) process has been applied for improved weight reduction, better environmental protection and energy savings. SSF process was well developed for high volume production of light weight aluminum components. In this paper, knuckle has been manufactured with A357 by SSF and thor investigated for microstructures and mechanical properties followed by various heat-treatment conditions. It was found that the examined microstructure was equiaxed at the whole cross-section area and as a result, the mechanical properties were satisfied by 100MPa YS, 260MPa UTS and $14\%$ elongation.

  • PDF