• Title/Summary/Keyword: Aluminum Forming

Search Result 331, Processing Time 0.02 seconds

Development of Manufacture Technology on Aluminum Rear Subframe by Hot Air Forming Method (열간가스성형 공법을 이용한 알루미늄 리어 서브프레임 제조기술 개발)

  • Kim, B.N.;Son, J.Y.;Lee, G.D.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.222-225
    • /
    • 2008
  • Due to new requirements of the automotive industry, concerning lightweight and non-corroding construction, new production methods, The Hot Air Forming process of aluminum alloys are of special interest. The disadvantage of aluminum alloy is the poorer formability compared to steel. The Hot Air Forming process is one of the forming process receiving recent attention. In the current study, Fabrication of aluminum rear subframe has been attempted using seam and seamless aluminum tubes. On the base of hot workability of the extruded tube and PAM-STAMP simulation results, Optimum condition for fabricating aluminum rear sub(lame parts by Hot Air Forming could be determined.

  • PDF

Effect of Forming Temperature on Spring-back in Hot Forming Quenching of AA6061 Sheet (AA6061 판재의 핫 포밍 퀜칭 공정에서 성형온도가 스프링백에 미치는 영향)

  • Shim, I.B.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • Aluminum alloys are widely used in automotive industry because of their high strength-to-density ratio and excellent corrosion resistance. However, conventional cold stamping of aluminum alloys leads to low formability and excessive spring-back. To overcome these problems, Hot Forming Quenching (HFQ) is applied to manufacture automotive part using aluminum alloy. The purpose of this study is to investigate effect of forming temperature on spring-back in HFQ of T6 heat treated AA6061 sheet. In this study, hat shape forming test was adopted to evaluate spring-back characteristics according to various forming temperatures. In additions, the test was also performed with warm forming conditions in comparison with dimensional accuracy of HFQed part. The experimental results showed that dimensional accuracy of HFQed part was superior to warm formed part and amount of spring-back was decreased as forming temperature rise.

The Effects of Forming Defects on the Mechanical Properties of Thixoformed Aluminum Parts for Automobile (반응고 성형된 자동차용 알루미늄 합금 부품의 기계적 강도 특성에 미치는 성형 결함의 영향)

  • Kim, C.H.;Choi, B.H.;Lee, S.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.293-295
    • /
    • 2007
  • The thixoforming process become important for forming automobile parts. But, the thixoforming process cannot still prevent to forming defects such as pores and shrinkage which reduce mechanical properties of automobile parts. Therefore, it is necessary to analyze the correlation between forming defects and mechanical properties. However, it is difficult to get data about relations between mechanical properties and forming defects in thixoformed aluminum alloy parts. In this study, three parts of aluminum thixoformed knuckle have been analyzed using tensile test and computer tomography(CT scan). Experimental results showed that the elongation properties of thixoformed aluminum parts were significantly dependent on size and number of forming defects.

  • PDF

Forming limits of aluminum tubes in tube hydroforming (알루미늄 튜브 하이드로포밍의 성형한계)

  • 조완제;이상영;김영석;이상용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.244-248
    • /
    • 2003
  • Recently social demands of fuel economy and environmental regulations require the development of light materials and new manufacturing technologies. In this point, the aluminum tube hydroforming process which is satisfied with good strength-to-weight ratio and recyclability is innovative concept. However the level of the aluminum tube hydroforming technology is low in comparison with that of steel tube hydroforming. In this paper, the hydroformability of aluminum tubes in different heat treatments is presented. Theoretical results for forming limits of the wrinkling and bursting are compared with experimental results of aluminum tubes.

  • PDF

Sectional Finite Element Analysis of Forming Process of Aluminum Sandwich Sheet by Bending Augmented Membrane Elements (굽힘 첨가 박막요소에 의한 알루미늄 샌드위치 판재 성형공정의 단면 유한요소 해석)

  • 이재경;금영탁;유용문;이명호
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.91-100
    • /
    • 2001
  • A sectional FEA program is developed lot analyzing forming processes of sandwich sheets, which are intensively used recently as a lightweight material of an automobile body. The aluminum sandwich sheet consists of two aluminum skins and a polyprophylen core in between. The aluminum sandwich sheet is dominantly effected by the bending effects in small radius of curvature, so that an appropriate description of bending effects is required to analyze the forming processes. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the curvature of the tool and are added to the membrane stretch forces. To verify the validity of the developed program the sectional FEA results in stretch/draw forming Processes of a square cup and draw forming Processes of an outer hood panel were compared with the measurements.

  • PDF

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 최철현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming (열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구)

  • Lee, G.M.;Go, G.Y.;Lee, H.C.;Kim, D.O.;Lee, Y.K.;Kim, J.S.;Song, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis (인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구)

  • Jung, S.H.;Yang, J.H.;Kim, Y.B.;Lee, K.J.;Kim, B.H.;Lee, J.S.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.

Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가)

  • Lim, H.T.;Kim, H.J.;Lee, D.J.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.138-142
    • /
    • 2006
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial fred. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D pretending on the tube hydroforming process of an automotive trailing arm were evaluated and compared with each other.

Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가)

  • Lim H. T.;Kim H. Y.;Kim H. J.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.243-246
    • /
    • 2005
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial feed. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D prebending on the tube hydroforming process of an automotive failing arm were evaluated and compared with each other.

  • PDF