• Title/Summary/Keyword: Aluminum Casting

Search Result 362, Processing Time 0.024 seconds

Numerical and Experimental Study of Semi-solid A356 Aluminum Alloy in Rheo-Forging process

  • Kim, H.H.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery.

  • PDF

A Filling Analysis on Forging Process of Semi-Solid Aluminum Materials Considering Solidification Phenomena (응고현상을 고려한 반용융 알루미늄재료의 단조공정에 관한 충전해석)

  • 강충길;최진석;강동우
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 1996
  • A new forming technology has been developed to fabricate near-net shape products using light metal. A semi-solid forming technology has some advantages compared with the conventional forming processes such as die casting squeeze casting and hot/cold forging. In this study the numerical analysis of semi-solid filling for a straight die shape and orifice die shape in gate pattern is studied on semi-solid materials(SSM) of solid fraction fs =30% in A356 aluminum alloy. The finite difference program of Navier-Stokes equation coupled with heat transfer and solidification has been developed to predict a filling pattern and the temperature distribution of SSM. The programdeveloped in this study gives die filling patterns of SSM and final solidifica-tion region.

  • PDF

Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites (2-D Braided Textile 금속복합재료의 성형과 특성 해석)

  • 이상관;김효준;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

Microstructural Analysis of Local Tensile Deformation Characteristics in A356 Hollow Sand Cast Chassis Part (A356 중공 주조 샤시 부품에서의 국부적인 인장 변형 특성에 미치는 미세 조직 분석)

  • Kim, Jae-Joong;Ko, Young-Jin;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Aluminum rear lower arm is designed for luxury sedan and manufactured by hollow sand casting in the present study. Here we present the relationship between local microstructure and coupon tensile test in the rear lower arm. The characteristics of the local tensile deformation are supposed to be dependent upon Si distribution and DAS (dendrite arm spacing). Si distribution affects the yield strength and DAS affects the elongation of local area in the part, respectively.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

The Effects of Pattern Coatings on the Solidification of Pure Aluminum Castings and the Thermal Behavior of Molds in FMC Processes (FMC법에서 모형 도형제가 순알루미늄 주물의 응고와 주형의 열적거동에 미치는 영향)

  • Cho, N.D.;Kim, Y.N.
    • Journal of Korea Foundry Society
    • /
    • v.7 no.2
    • /
    • pp.122-132
    • /
    • 1987
  • Full mold casting process is a new technique offering numerous advantages and promising possibilities. The present study is aimed to bring out the results of experiments carried out to study the effect of pattern coatings on the solidification of 99.5% pure aluminum plate-shaped castings in the various sand molds and the thermal behavior of the molds. The results of the investigation indicate that (i) with increase in pattern coating thickness, the relative chilling power decreases gradually for silica and increases for zircon coating, and (ii) the application of a pattern coating significantly reduces the maximum interface temperature by the mold which is more pronounced in the case of thinner mold wall. The investigation also indicates that Chvorinov's rule is not found to be valid for the casting in the full mold, with or without pattern coating. Therefore in full mold process, the pattern coating thickness will be a very important parameter in the study of thermal behavior.

  • PDF

Density and Mechanical Properties of Aluminum Lost Foam Castings (알루미늄 합금 소실모형주조재의 밀도 및 기계적 성질)

  • Kim, Ki-Young;Oh, Don-Suk;Choe, Kyeong-Hwan;Cho, Gue-Serb;Lee, Kyung-Whoan
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.94-100
    • /
    • 2004
  • Gas porosity which is a common defect in aluminum alloy casting, is also thought to be severer in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fundamental experiments were carried out to evaluate the effect of process variables such as the melt treatment, the cooling rate and pouring temperature on the density and mechanical properties in A356.2 castings with simple bar shape. The density of grain refined specimen was slightly lower than that of degassed one, but was higher than that of no treated one and that of shot ball packed specimen was higher than the other specimens. The tensile strength and elongation were in the ranges of $200{\sim}230MPa$ and $0.5{\sim}1.5%$ respectively. The density and hardness of lost foam cast specimens decreased with increase in pouring temperature.