• 제목/요약/키워드: Aluminum Alloy Sheet Metal

검색결과 42건 처리시간 0.02초

반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발 (Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State)

  • 강충길;김현우;김영도
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.581-593
    • /
    • 1990
  • 본 연구에서는 교반기술에 의하여 얻어진 반응고상태의 금속에 단섬유를 첨가 하여 복합재료를 제조하였다. 그리고 제조되어진 복합재료에 있어서 섬유의 분산상 태및 기지재와의 접합관계를 조사하여 압연가공에 필요한 반응고상태인 금속복합재료 의 제조방법을 확립하였다. 균일하게 분실되어진 반용융상태의 단섬유강화형 금속복 합재료를 직접 압연하여 박판을 제조할 수 있는 가능성을 검토하였으며, 또한 제조되 어진 박판의 인장시험에 의하여 기계적 성질을 조사하였다.

유한요소해석을 이용한 금속 판재용 전단 파단 시편 설계 (Design of Shear Fracture Specimens for Sheet Metals Using Finite Element Analyses)

  • 김찬양;봉혁종;이명규
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.92-99
    • /
    • 2023
  • In this study, shear fracture specimens are designed using finite element analyses for the characterization of ductile fracture criteria of metal sheets. Many recently suggested ductile fracture criteria require experimental fracture data at the shear stress states in the model parameter identification. However, it is challenging to maintain shear stress states in tension-based specimens from the initial yield to the final fracture, and the loading path can be different for the different materials even with the same shear specimen geometries. To account for this issue, two different shear fracture specimens for low ductility/high ductility metal sheets are designed using the sensitivity tests conducted by finite element simulations. Priorly mechanical properties including the Hosford-Coulomb fracture criterion of the aluminum alloy 7075-T6 and DP590 steel sheets are used in the simulations. The results show that shear stress states are well-maintained until the fracture at the fracture initiation points by optimizing the notch geometries of the shear fracture specimens.

Al/Fe 이종금속 접합부의 부식특성 (Corrosion Assessment of Al/Fe Dissimilar Metal Joint)

  • 강민정;김철희;김준기;김동철;김종훈
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

A Parametric Study of Sheet Metal Denting Using a Simplified Design Approach

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1673-1686
    • /
    • 2002
  • In the interest of improved automotive fuel economy, one solution is reducing vehicle weight. Achieving significant weight reductions will normally require reducing the panel thickness or using alternative materials such as aluminum alloy sheet. These changes will affect the dent resistance of the panel. In this study, the correlation between panel size, curvature, thickness, material properties and dent resistance is investigated. A parametric approach is adopted, utilizing a "design software" tool incorporating empirical equations to predict denting and panel stiffness for simplified panels. The most effective time to optimize an automotive body panel is early in its development. The developed design program can be used to minimize panel thickness or compare different materials, while maintaining adequate panel performance.

크린칭 접합의 성형특성에 관한 연구 (A Study on the Forming Characteristics of Clinching Joint Process)

  • 비스라;노정훈;황병복;함경춘;장동환
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.603-613
    • /
    • 2007
  • This paper is concerned with joining of thin metal sheets by single stroke clinching process. This method has been used in sheet metal work as it is a simple process and offers the possibility of joining similar-dissimilar thin sheet metals. Clinching generates a joint by overlapping metal sheets deforming plastically by punching and squeezing sequence. AA 5754 aluminum alloy of 0.5 mm thick sheets have been selected as a modal material and the process has been simulated under different process conditions and the results have been analyzed in terms of the quality of clinch joints which are influenced mainly by tool geometries. The rigid-plastic finite element method is applied to analyses in this paper. Analysis is focused mainly on investigation of deformation and material flow patterns influenced by major geometrical parameters such as die diameter, die depth, groove width, and groove corner radius, respectively. To evaluate the quality of clinch joints, four controlling or evaluation parameters have been chosen and they are bottom, neck thickness of bottom and top sheets, and undercut thickness, respectively. It has been concluded from the simulation results that the die geometries such as die depth and diameters are the most decisive process parameters influencing on the quality of clinch joints, and the bottom thickness is the most important evaluation parameter to determine if the quality of clinch joints satisfies the demand for industrial application.

Al6061 판재성형에서 핫 포밍 ��칭의 성형성 및 기계적 특성 평가 (Evaluation of Formability and Mechanical Characteristic for Hot Forming Quenching in Sheet Forming of Al6061 Alloy)

  • 고대훈;김재홍;이찬주;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.483-490
    • /
    • 2013
  • 알루미늄 소재의 냉간 판재성형에서는 낮은 성형성과 성형 후 과도한 스프링백에 의한 치수정밀도가 저감되는 문제가 있다. 이에 본 연구에서는 기존 제조공법의 문제점을 개선하기 위해 새로운 제조공법인 Hot forming quenching(HFQ)을 제시하고자 한다. HFQ 은 용체화처리 온도로 가열된 알루미늄 판재를 열간성형하고, 다이 내에 설치된 냉각채널에 의해 ��칭하여 열간성형과 열처리를 동시에 함으로써 성형성 향상, 스프링백 저감 효과를 얻을 수 있다. 기존의 냉간성형 대비 HFQ 의 성형성 향상효과를 에릭슨 시험을 통해 평가하였다. 스프링백 특성을 파악하기 위해 V-beding 시험에 HFQ 를 적용하여 굽힘 성형된 제품의 치수정밀도를 기존의 냉간성형과 비교하였다. 또한 강도 및 경도를 측정하여 기존 냉간 성형에 의한 값들과 비교함으로써 알루미늄 제품 성형에 HFQ 을 적용하기 위한 타당성을 평가하였다.

박판 Al MIG 용접용 AC펄스 전류 파형의 설계 및 출력특성 (Design and Output Characteristic of AC Pulse Current for MIG Welding of Ai Sheet)

  • 조상명;김태진;이창주;임성룡;공현상;김기정
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.57-63
    • /
    • 2003
  • Since new types of vehicles or structures made from thin aluminum alloy are under rapid development and some products are already on the market, welding of aluminium sheet is increasing. MIG(Metal Inert Gas), MIG-Pulse, TIG(Tungsten Inert Gas) welding are the typical Ai welding. MIG welding has the advantage of high speed, but it is difficult to apply to the thin plate, because of bum-through by the high heat input and spatter. MIG-Pulse welding can weld without spatter and burn-through, but when the gap exists at the welding joint, there is quite a possibility of bum-through. TIG welding is difficult to weld at a high speed. AC Pulse welding alternates between DCEP(Direct Current Electrode Positive) and DCEN(Direct Current Electrode Negative). DCEN is higher wire melting rate than DCEP, while lower temperature of droplet than DCEP. In AC Pulse welding, far fixed welding current, wire melting rate increases as the EN ratio increases. For fixed wire feed rate, welding current decreases as the EN ratio increases. Because of these features, the temperature of droplet, the depth of penetration, the width of bead decrease and the reinforcement height increases as EN ratio increases, and these are able to weld at a high speed, lower heat input. It is the purpose of this study that design of AC pulse current waveform for MIG welding of Al sheet and estimation of output characteristic.

자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE 기법 개발 (A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy)

  • 최한호;구태완;황상문;강범수
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.164-171
    • /
    • 1999
  • An optimum blank design technology is required for near-net of net-shape cold forming using sheets. Originally, the backward tracing scheme has been developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform of initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges, one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach or decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF

CFRP 모델링 기법에 따른 CFRP-Al합금 SPR 접합공정의 수치해석 정확도 분석 (Analysis of the Numerical Simulation Accuracy in the CFRP-Al Alloy SPR Joint Process According to the CFRP Modeling Method)

  • 김성호;박남수;송정한;노우람;박근영;배기현
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.265-271
    • /
    • 2020
  • The purpose of this paper is to analyze the numerical simulation accuracy according to the CFRP modeling method in the CFRP-Al alloy SPR (Self-Piercing Rivet) joint process. The mechanical properties of the CFRP, aluminum sheet are precisely obtained from the tensile test according to the loading direction. Additionally, the hardening curve of rivet was calculated from the inverse analysis of the machined rivet-ring compression test. For the CFRP-Al alloy SPR simulation, two kinds of the CFRP modeling methods were established based on the continuum and layer-by-layer approaches. The simulation results showed that the CFRP layer-by-layer modeling method can provide more reliable prediction shape of the fractured sheets and deformed rivet. This simulation technique can be used in evaluating the CFRP-Metal SPR performance and designing the SPR process conditions.

기계적 프레스 접합부의 강도 평가에 관한 실험적 연구 (An Experimental Study on the Strength Evaluation of Mechanical Press Joint)

  • 박영근;정진성;김호경;이용복
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.438-448
    • /
    • 2000
  • Mechanical press joining technique has been used in sheet metal joining processes because of its simple process and possibility of joining dissimiliar metals, such as steel and aluminum. The static and cyclic behavior of single overlap AI-alloy and steel(SPCC) joints has been investigate. Relationships were developed to estimate the strength of the joint taking into consideration base metal strength properties and the geometry of the joint. Fatigue test results have shown that fatigue resistance of the SPCC mechanical press joints is almost equal to that of the spot weld at the life of $10^6$ cycles. Also, the dissimilar material jointed specimen with upper SPCC plate and button diameter corresponding to the nugget diameter of the spot welded specimen has almost same strength as the same material jointed specimen and as the spot welded specimen.