• 제목/요약/키워드: Aluminum Alloy Sheet Metal

검색결과 42건 처리시간 0.022초

알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향 (The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet)

  • 김종길;김종봉;김종호
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

알루미늄 판재 성형해석 시 파단 모델 적용 (Application of Failure Criteria in Aluminum Sheet Forming Analysis)

  • 김기정;;김대영;김헌영
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.167-172
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

알루미늄, 마그네슘과 구리합금의 비정형롤판재성형 공정 적용성 비교에 관한 연구 (Comparative Study of Applicability of Aluminum, Magnesium and Copper Alloy Sheets using Flexibly-reconfigurable Roll Forming)

  • 길민규;윤준석;박지우;강범수
    • 소성∙가공
    • /
    • 제26권3호
    • /
    • pp.168-173
    • /
    • 2017
  • A new sheet metal forming process, called flexibly reconfigurable roll forming (FRRF), is expected to resolve the economical limitation of the existing 3D curved sheet metal forming processes. The height-controllable guides and a couple of flexible rollers are utilized as the forming tool. Recently, as the 3D curved sheet metal is increasingly demanded in various fields, the application of FRRF to diverse materials is necessary. In addition, the formability comparison of several materials is needed. Therefore, in this study, we investigated the applicability of FRRF for different materials such as aluminum, magnesium, and copper alloys, and also the formability of these materials was compared using FRRF. The numerical simulation was conducted using ABAQUS, the commercial software, and the experiments were carried out using an FRRF apparatus to validate the simulation results. Finally, the applicability of FRRF for the chosen materials and the formability of these materials on FRRF process were confirmed by comparing the simulation and experimental results.

자동차용 알루미늄 5185-폴리프로필렌 샌드위치 판재의 성형성 (Formability of Aluminum 5182-Polypropylene Sandwich Panel for Automotive Application)

  • 김기주;정효태;손일선;김철웅;김중배
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.175-181
    • /
    • 2007
  • The objective of this study was to develop formability evaluation techniques in order to apply aluminum sandwich panel for automotive body parts. For this purpose, newly adopting formability evaluation (using limit dome height and plane strain test) was carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the aluminum sandwich panel. The results showed that there were good agreements between the old formability evaluation method and the new method which was more simplified than that of old one. From the results of these formability evaluation, the formability of sandwich panel was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich panel. Also, it was found that sandwich panel could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

열가소성 복합재료를 기반한 섬유금속적층판의 충격 거동에 관한 실험 및 수치적 연구 (Numerical and Experimental Investigation on Impact Performance of Fiber Metal Laminates Based on Thermoplastic Composites)

  • 이병언;강동식;박으뜸;김정;강범수;송우진
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.566-574
    • /
    • 2016
  • Fiber metal laminates, which are hybrid materials consisting of metal sheets and composite layers, have contributed to aerospace and automotive industries due to their reduced weight and improved damage tolerance characteristics. In this study, the impact performance of the laminates, which are comprised of a self-reinforced polypropylene and two aluminum sheets, and the pure aluminum alloy sheet material were investigated experimentally via numerical simulation. In order to compare the impact performance, the laminates and aluminum alloy were examined by assessing the impact force, energy time histories, and specific energy absorption. ABAQUS is a commercial software that is used to simulate the actual drop-weight tests. Based on this study, it is noted that the impact performance of the laminates was superior to that of the aluminum alloy. In addition, a good agreement between the experimental and numerical results can be achieved when the impact force and energy time histories from the experiments and the numerical simulations are compared.

알루미늄 튜브 온간 하이드로포밍 성형성에 관한 연구 (Studies on the Warm Hydroformability of Aluminum Tubes)

  • 김봉준;류종수;김대현;김동우;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.198-201
    • /
    • 2004
  • Aluminum alloys have high potential for weight reduction in automotive and other applications. But aluminum alloys have relatively low tubular hydroformability which can be enhanced by conducting the hydroforming at elevated temperatures. Hot working processes are commonly used in bulk forming such as forging and rolling, but still is rare in sheet metal forming like hydroforming. In this study hydroforming test at elevated temperatures is performed by special designed induction heating system to investigate the hydroformability of aluminum alloys. The high temperature formability characteristrics are obtained by 1?fitting forming test and circular bulging test and the effects of the process parameters such as feeding amount, internal pressure and temperatures on the tubular forming limits are mainly investigated.

  • PDF

국부 표면개질된 알루미늄 합금 판재의 성형성 (Formability of Locally Surface-Modified Aluminum Alloy Sheets)

  • 이창길;김성준;이태호;박신상;한흥남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.299-300
    • /
    • 2005
  • Surface friction welding (SFW) is a newly developed technology fur joining thin metal sheets, which utilizes friction between tool and weldment. In the present study, the 5052 and 1050 Al sheets were locally surface-modified using SFW technology. Formability of the locally surface-modified sheets was superior to that of the parent material. Yield or tensile strengths of the locally surface-modified specimens were lower then those of the parent material, but elongations of the locally surface-modified specimens were higher then that of the parent material.

  • PDF

평면이방성 박판성형공정의 3차원 유한요소해석 (3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal)

  • 이승열;금영탁;박진무
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

알루미늄 합금의 점용접에서 용접전류 형태가 용접성에 미치는 영향 (Effect of Welding Current Type on Weldability in Spot Welding of Aluminum Alloy)

  • 한용섭
    • Journal of Welding and Joining
    • /
    • 제15권2호
    • /
    • pp.89-99
    • /
    • 1997
  • Spot welding is one of the important welding processes for the construction of thin metal sheet. Because of low investment cost, alternating welding current is widely applied for power source. Direct current type could be, however, recommened for high quality weldment. In this study, the effect of welding current type on the weldability and the electrode life in spot welding of aluminium alloy were investigated. Various welding tests were done by using three phase direct and alternating welding current, respectively. In spite of high variation of welding force, weld quality and electrode life with alternating welding current were shown better results than those with direct current for 2mm thick alumininum alloy sheets. This was due to excessive erosion of the positive electrode in direct welding current compared with the negative one. On the contrary to 2mm sheets, the welding parameters of alternating current for 1mm sheets must be carefully selected.

  • PDF

셰이빙 정밀도 향상을 위한 예비전단 가공에서의 가공여유와 틈새의 영향 (Influence of shaving allowance and clearance in pre-shearing process for improving shaving accuracy)

  • 오솔길;조대일;강병두;김종호
    • Design & Manufacturing
    • /
    • 제2권3호
    • /
    • pp.40-44
    • /
    • 2008
  • Shaving in sheet metal forming is defined as a finish process to make the sheared surface clean which was blanked or pierced in the previous shearing stage. In this study the new shaving technique is applied to the progressive operation. The specimen is automatically fed by continuous movement of the strip. Which improve the positioning accuracy higher. For this study a square part which consist of blanking and piercing is selected for investigation and the progressive die which includes pre-piercing, pierce-shaving, half-blanking and blank-shaving etc is prepared for specimens of steel sheet(SPCC) and aluminum alloy sheet(AL5052). Experiments are carried out for several working variables such as shaving allowance, pre-shearing clearance and relative half-blanking depth. Consequently it was confirmed that the shaving by progressive die can be successfully employed to produce the clean parts requiring shaving process and optimum working conditions for shaving SPCC and AL5052 sheet metal are shaving allowance of 0.2mm(1.3% of thickness) and pre-shearing clearance of 5%.

  • PDF