• Title/Summary/Keyword: Aluminum Alloy Casting

Search Result 218, Processing Time 0.024 seconds

The Effect of Zr Element on the Properties of Continuous Casting and Rolling Materials for Al - 0.11 wt.%Fe Alloy (Al-0.11Fe계 합금에서의 Zr, Sc원소 미세첨가에 따른 연속주조재 및 압연재의 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Kim, Sung-Kyu;Kim, Ji-Sang;Kim, Jin-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1099-1104
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especailly, the effect of a very small amount of Zr, Sc element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr, Sc addition up to 0.3 wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75{\sim}20.05\;kgf/mm^2$ and $420{\sim}520\;^{\circ}C$, was obtained at 0.3 wt.% Zr, Sc addition, respectively. Particles of the $Al_3Zr$ and $Al_3Sc$ phase affected the ambient and elevated-temperature strength of the alloys.

The Effect of Zr element on the Properties of Continuous Casting and Rolling Materials for Al-0.11 wt.%Fe Alloy (Al-0.11 Fe계 합금에서의 Zr원소 미세첨가에 따른 연속주조재 및 압연재의 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Kim, Sung-Kyu;Kim, Han-Eol;Kim, Han-Sik;Kim, Ji-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.519-520
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especially, the effect of a very small amount of Zr element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr addition up to 0.3wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75\;kgf/mm^2$ and $420^{\circ}C$, was obtained at 0.3 wt.% Zr addition, respectively.

  • PDF

Annealing Characteristics of an Al-6.5Mg-1.5Zn Alloy Cold-Rolled After Casting (주조 후 냉간 압연된 Al-6.5Mg-1.5Zn계 합금의 어닐링 특성)

  • Oh, Sung-Jun;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.534-538
    • /
    • 2018
  • The annealing characteristics of a cold rolled Al-6.5Mg-1.5Zn alloy newly designed as an automobile material is investigated in detail. The aluminum alloy in the ingot state is cut to a thickness of 4 mm, a total width of 30 mm and a length of 100 mm and then reduced to a thickness of 1 mm (reduction of 75 %) by multi-pass rolling at room temperature. Annealing after rolling is performed at temperatures ranging from 200 to $400^{\circ}C$ for 1 hour. The tensile strength of the annealed material tends to decrease with the annealing temperature and shows a maximum tensile strength of 482MPa in the material annealed at $200^{\circ}C$. The tensile elongation of the annealed material increases with the annealing temperature, while the tensile strength does not, and reaches a maximum value of 26 % at the $350^{\circ}C$ annealed material. For the microstructure, recovery and recrystallization actively occur as the annealing temperature increases. The recrystallization begins to occur at $300^{\circ}C$ and is completed at $350^{\circ}C$, which results in the formation of a fine grained structure. After the rolling, the rolling texture of {112}<111>(Cu-Orientation) develops, but after the annealing a specific texture does not develop.

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

Development of a monolithic apparatus for degasing aluminum continuous casting molten metal (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • 이용중;김태원;김기대;류재엽;이형우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.145-149
    • /
    • 2004
  • It is necessary for managing a perfect process for degasing aluminum molten metal according to the increase of a grade of aluminum and its alloy products. There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle. pollution due to the producing a lot of toxic gases like chlorine and fluoride gas. irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals. loss of metals, and decreasing the life of refractory materials. In order to solve these problems. this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the exist ing methods and prevented environmental pollution wi th smokeless. odor less, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The developed method can significantly reduce product faults that are caused by the production of gas and oxidation because it uses a preprocessed molten metal with chemicals. In addition. the amount of the produced sludge can also be reduced by 60-80% maximum compared with the existing methods. Then. it makes it possible to minimize the loss of metals. Moreover. the molten metal processing and settling time is also shortened by comparing it with the existing methods that are applied by using chemicals. In addition, it does much to improve the workers' health, safety and environment because there is no pollution. The improvement of productivity and prevent ion effects of disaster from the results of the development can be summarized as follows. It will contribute to the process rationalization because it does not have any unnecessary processes that the molten metal will be moved to an agitator by using a ladle and returned to process for degasing like the existing process due to the monolithic configuration. There are no floating impurities due to the oxidation caused by the contact with the air as same as the existing process. In addition. it can protect the blending of precipitation impurities. Because it has a monolithic configuration. it can avoid the use of additional energy to compensate the temperature decreasing about 60t that is caused by the moving of molten metal. It is not necessary to invest an extra facilities in order to discharge the gas generated from a degasing process by using an agitator. The working environment can be improved by the hospitable air in the factory because the molten metal is almost not exposed in the interior of the area.

  • PDF

A Study on the Frictional Abrasion Properties of MMC (금속기 복합재료의 마찰ㆍ마모 특성에 관한 연구)

  • 이광영;박원조;허선철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.171-177
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties, it was also highlighted as the material of frontier industry because strength, heat-resistant, corrosion-resistant and wear-resistant were superiored. In recent years, the study of metal matrix composite has increased by aluminum alloy. The study is based on the tribological properties of AC4CH that is a part of the mechanical property of metal matrix composites. Metal matrix composite that is produced from matrix material AC4CH and reinforcement SiO$_2$, Al$_2$O$_3$ and TiO$_2$ are added to the metal matrix composite fur strength so binding among the whisker can take place. Each metal matrix composite is produced using the squeeze casting method. To test for tribe a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature which is 40$\^{C}$. As the results of this study, the tribological properties of each specimen are more improved than AC4CH. The variation of coefficient resistance is more stable at the AC4CH and TiO$_2$, but the variation rates are higher at the inanimate binder.

Testing and evaluation of the corrosion behavior of Aluminum/Alumina bulk composites fabricated via combined stir casting and APB process

  • Abdalkareem Jasim;Ghassan Fadhil Smaisim;Abduladheem Turki Jalil;Surendar Aravindhan;Abdullah Hasan Jabbar;Shaymaa Abed Hussein;Muneam Hussein Ali;Muataz S. Alhassan;Yasser Fakri Mustafa
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.263-271
    • /
    • 2023
  • In this study, AA1060/Alumina composites were fabricated by combined stir casting and accumulative press bonding (APB). The APB process was repeated up to six press bonding steps at 300Ċ. As the novelty, potential dynamic polarization in 3.5Wt% NaCl solution was used to study the corrosion properties of these composites. The corrosion behavior of these samples was compared and studied with that of the annealed aluminum alloy 1060 and versus the number of APB steps. So, as a result of enhancing influence on the number of APB process, this experimental investigation showed a significant enhancement in the main electrochemical parameters and the inert character of the Alumina particles. Together with Reducing the active zones of the material surfaces could delay the corrosion process. Also, at higher number of steps, the corrosion resistance of composites improved. The sample produced after six number of steps had a low corrosion density in comparison with high corrosion density of annealed specimens. Also, the scanning electron microscopy (SEM), was used to study the corrosion surface of samples.

A Study on Fracture Toughness of Metal Matrix Composites Reinforced with $Al_{18}B_4O_{33}$ ($Al_{18}B_4O_{33}$휘스커 강화 금속기 복합재료의 파괴인성에 관한 연구)

  • Park, Sung-Ho;Choi, Yong-Bum;Park, Won-Jo;Huh, Sung-Chul;Yun, Han-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.335-340
    • /
    • 2002
  • In recent years, the study of metal matrix composite has increased specially, aluminum alloy, research and development are briskly progress to find new metal matrix composite. this study is following the this purpose; This study is used metal matrix composite that was produced by matrix, AC4CH. and reinforcement $A_{18}B_4O_{33}$ metal matrix composite to add $Al_2O_3,\;TiO_2$ for strengthen of binding together among the Whisker. Each Metal matrix composite is produced using the squeeze casting method. Fracture tounghness test was in accordance with the provisions of ASTM E399; Specimen was produced half-size CT specimen W=25mm, B=12.5mm, Cross head speed 0.05mm/min in room temperature. The plane strain fracture toughness $K_{IC}$ is $8.7MPa-m^{0.5}$ for $Al_{18}B_4O_{33}$/AC4CH., $9.28MPa-m^{0.5}$ for $Al_{18}B_4O_{33}$/AC4CH added $TiO_2$. and $Al_2O_3$ but AC4CH alloy was violated the critical stipulated by ASTM standard for a valid measurement of $K_{IC}$. In case of, it was performed $I_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820

  • PDF

Finite Element Analysis Method for Impact Fracture Prediction of A356 Cast Aluminum Alloy (A356 주조 알루미늄 합금의 충격 파괴 예측을 위한 유한요소해석 기법 연구)

  • Jo, Seong-Woo;Park, Jae-Woo;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Generally, metal is the most important material used in many engineering applications. Therefore, it is important to understand and predict the damage of metal as result of the impact. The objective of this research is to evaluate the damage criterion on the impact performance of A356 Al-alloy castings. Both experimental method and computational analysis were used to achieve the research objective. In this paper, we performed impact test according to various impact velocities to the A356 cast aluminium specimen for damage prediction. Impact computational simulation was done by applying properties obtained from the tensile test, and damages was predicted according to the damage criteria based plastic work. The good agreement of the results between the experiment and computer simulation shows that the reliability of the proposed FE simulation method to predict fracture of A356 casting components by impact.

쌍롤 박판주조법으로 제조된 고합금계 알루미늄 합금의 미세조직 및 기계적 특성

  • Cheon, Bu-Hyeon;Kim, Hyeong-Uk;Lee, Jae-Cheol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • 최근 환경과 에너지에 대한 관심이 증대됨에 따라 차체의 경량화를 위한 고합금계 알루미늄 합금의 연구가 활발히 진행되고 있다. 특히 5000계 알루미늄 합금은 비중이 낮을 뿐만 아니라 Mg의 첨가에 의해 높은 강도 및 성형성을 얻을 수 있기 때문에 자동차용 판재로 많은 주목을 받고 있다. 현재 사용되는 대부분의 알루미늄 합금판재는 DC주조법과 추가적인 압연공정으로 제조되기 때문에 경제성 문제와 낮은 냉각속도로 인한 금속학적인 문제를 갖는다. 그러나 DC주조법과는 달리 쌍롤 박판주조법은 용탕으로부터 직접 판재를 제조하기 때문에 경제적이며 효율적인 주조공정이다. 또한 냉각속도가 빠르기 때문에 비교적 주조편석이 적고 전반적인 미세조직이 균일하여 고합금계 알루미늄 합금 판재제조에 매우 유용하게 응용될 수 있다. 본 연구에서는 쌍롤 박판주조법으로 고합금계 알루미늄 합금 판재를제조하고, 제조된 합금의 열간압연 및 열처리 조건에 따른 기계적 특성을 비교 및 평가하였다. 또한 미세조직 및 집합조직을 분석함으로써 고합금계 알루미늄 합금 판재의 실용화 가능성을 평가하였다.

  • PDF