• 제목/요약/키워드: Aluminum Alloy 5J32

검색결과 9건 처리시간 0.022초

A5J32/A5052 이종 알루미늄 합금 겹치기 마찰교반접합부의 인장성질에 미치는 재료배열 및 접합조건의 영향 (Effects of Welding Conditions and Material Arrangement on Tensile Properties of Friction Stir Lap Welded of Dissimilar Al Alloy, A5J32/A5052)

  • 윤태진;강명창;강정윤
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.302-307
    • /
    • 2013
  • A5J32-T4 and A5052-H32 dissimilar aluminum alloy plates with thickness of 1.6 and 1.5 mm were welded by friction stir lap welding (FSLW). The FSLW were studied using different probe length tool and various welding conditions which is rotation speed of 1000, 1500 rpm and welding speed of 100 to 600 mm/min and material arrangement, respectively. The effects of plunge depth of tool and welding conditions on tensile properties and weld nugget formation. The results showed that three type nugget shapes such as hooking, void, sound have been observed with revolutionary pitch. This plunge depth and material arrangement were found to effect on the void and hooking formation, which in turn significantly influenced the mechanical properties. The maximum joint efficiency of the FSLWed plates was about 90% compared to base metal, A5052-H32 when the A5052-H32 was positioned upper plate and plunge depth was positioned at near interface between upper and lower plates.

AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발 (Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank)

  • 전성진;이문용;김병민
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

이종 알루미늄 합금 KS5J32/AA6K31 겹치기 마찰교반 접합부의 인장성질에 미치는 접합조건의 영향 (Effect of Welding Condition on Tensile Properties of Friction Stir Lap Joint of Dissimilar Al Alloy, KS5J32/AA6K31)

  • 김상주;윤태진;송상우;강정윤
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.98-105
    • /
    • 2012
  • The focus of this investigation is to evaluate the effect of joining parameter on the microstructure and mechanical properties of welds produced by friction stir lap welding. The dissimilar Al alloys, KS5J32 and AA6K31, were joined by friction stir lap welding technique under several welding conditions, and KS5J32 alloy was placed on the top of AA6K31 alloy. The tool rotation speeds were 1000, 1250, and 1500rpm, and the welding speeds were 100, 300, 500, 700mm/min, respectively. The results showed that two shapes of nugget, such as onion ring and irregular vortex type, were observed with various revolutionary pitch. In all welding conditions, fracture occurred at the soften region of bottom sheet(AA6K31) and the strengths were 64~78% of those of base metal. Fractured positions were classified into three types : HAZ, triple point, void depending on the revolutionary pitch. The actual thickness of specimen at the fractured location was decreased with decreasing heat input. A linear relationship exists between the effective thickness of fractured position and peak load.

이종 알루미늄 합금 A6K31/A5J32 겹치기 마찰교반 접합부의 인장성질에 미치는 접합조건의 영향 (The effects of Welding Conditions on Tensile Properties of Friction Stir Lap Welded of Dissimilar Al Alloy, A6K31/A5J32)

  • 윤태진;김상주;송상우;홍재근;강정윤
    • Journal of Welding and Joining
    • /
    • 제29권2호
    • /
    • pp.72-79
    • /
    • 2011
  • The scope of this investigation is to evaluate the effect of joining parameters on the microstructural features and mechanical properties of dissimilar aluminum alloys, 1mm-thickness fixing AA6K31 at the top position and fixing AA5J32 at the bottom position. The friction stir lap welds were studied under various welding conditions, rotation speed of 1000, 1250, 1500rpm and welding speed of 100, 300, 500, 700mm/min, respectively. Mechanical test has been investigated in terms of tensile shear test and hardness test. The results showed that three type nugget shapes such as onion ring, zigzag type, hooking with the void, have been observed with revolutionary pitch. All welding conditions fractured at the HAZ of top plate, A6K31 and also the strength compare with base metal of lap joints were low efficiency, 52~63%. The thickness of fractured position was decreased with the lower heat input conditions. The relationships were excellent due to linear between the effective thickness of fractured position and peak load. The fractured position was the interface between joint area and not joint area. Also the strength efficiency compared with base metal was lower than decreasing rate of thickness because the hardness was decreased at fractured position due to softened material.

Al 5J32 합금의 레이저 용접에서 레이저출력 모듈레이션을 이용한 이면 험핑 비드의 안정화 (Prevention of Back Side Humping in Laser Welding of Al 5J32 Alloy by Using Laser Power Modulation)

  • 안도창;김철희;김재도
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.80-84
    • /
    • 2011
  • In the 5xxx series Al-Mg alloy, magnesium addition can increase the strength of aluminum alloy by solid solution strengthening but it has a relatively low melting and boiling temperature. During full -penetration laser welding of the Al-Mg alloys, its low boiling point and high vapor pressure brings about the spiky humping bead on the bottom side. Under back-side shielding, the spiking of back bead can be reduced but it restraints the process flexibility. In this study, a square pulse waveform modulation was employed to stabilize keyhole and back bead surface without back-side shielding. By using an experimental design, the bead shapes were evaluated for various process parameters such as the focal position, welding velocity and waveform parameters and the smooth back bead shape could be achieved.

원격 스캐너를 이용한 알루미늄 레이저 용접에 대한 생산 공정 최적화 설계 (The Design of Manufacturing Process Optimization for Aluminum Laser Welding using Remote Scanner)

  • 김동윤;박영환
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.82-87
    • /
    • 2011
  • In this study, we conducted laser welding by using remote scanner that is 5J32 aluminum alloy to observe the mechanical properties and optimize welding process parameters. As the control factors, laser incident angle, laser power and welding speed were set and as the result of weldablility, tensile shear tests were performed. ANOVA (Analysis of Variation) was also carried out to identify the influence of process variables on tensile shear strength. Strength estimation models were suggested using regression alnalysis and 2nd order polynomial model had the best estimation performance. In addition optimal welding condition was determined in terms with wedalility and productivity using objective function and fitness function. Final optimized welding condition was laser power was 4 kW, and welding speed was 4.6 m/min.

3차원 원격 스캐너를 이용한 알루미늄 5000 계열의 레이저 용접에서 공정 변수에 따른 용접 특성 분석 (Analysis of Weld Characteristics for Aluminum 5XXX Series Laser Welding Using 3-Dimension Remote Scanner)

  • 김동윤;박영환
    • 한국레이저가공학회지
    • /
    • 제14권2호
    • /
    • pp.1-7
    • /
    • 2011
  • The latest trends of vehicle technology development are fuel efficiency improvement, body designs declining air resistance and lightweight of materials. Especially, as lightened weight of materials makes engine efficient so that vehicles keep the best performance, it is the best way to protect the environment and reduce fuel consumption. In this study, we conducted laser welding by using 3-dimension remote scanner that is 5J32 aluminium alloy. Furthermore, conduction experiment that was 3 times repeated for changing factors such as observing angle, laser power and welding speed. we observed exterior and cross section of weled part and tensile strength. When increasing laser power and decreasing laser speed, tensile strength increased. In order to evaluate factors that affect tensile strength qualitatively we conducted ANOVA. We assumed that the factors are observing angle, laser power and welding speed. Then we found that laser power and laser speed affect tensile strength. We conducted evaluation of weldability of aluminium alloy by above ways.

  • PDF