• Title/Summary/Keyword: Aluminum Casting Materials

Search Result 169, Processing Time 0.026 seconds

A Study on the Mechanical and Thermal Properties of Spray-cast Hypereutectic Al-Si-Fe Alloys (분사주조한 과공정 Al-Si-Fe 합금의 기계적 및 열적 특성에 관한 고찰)

  • Park, Jae-Sung;Ryou, Min;Yoon, Eui-Pak;Yoon, Woo-Young;Kim, Kwon-Hee;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.3
    • /
    • pp.123-128
    • /
    • 2006
  • Mechanical and thermal properties of spray-cast hypereutectic Al-20wt.%Si-xwt.%Fe alloys (x=0, 1, 3, 5) were investigated. After the spray-casting, hot extrusion was performed at $400^{\circ}C$. Intermetallic compound (${\beta}-Al_5FeSi$) and primary Si are observed in the spray-cast aluminum alloys. The size of primary Si and intermetallic compound of the spray-aluminum alloys became finer and more uniformly distributed than that of the permanent mold cast ones. Ultimate tensile strength of the spray-cast aluminum alloys increased by increasing Fe contents, but that of the permanent mold cast aluminum alloys decreased by increasing Fe contents possibly due to increased amount of coarse intermatallic compound. The coefficient of thermal expansion (CTEs) of the aluminum alloys became lower with finer primary Si and intermetallic compound, and this is attributed to the increased amount of interfacial area between the aluminum matrix and the phases of finer Si and intermetallic compound.

Hydrogen Gas Pick-Up of Al-alloy Melt During Lost Foam Casting (소실모형 주조시 알루미늄 합금 용탕의 수소 용해에 관한 연구)

  • Shin, Seung-Ryoul;Choi, Hyun-Jin;Lee, Kyong-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.167-173
    • /
    • 2002
  • The hydrogen gas pick-up problem that can occur during Lost Foam Casting was investigated by reduced pressure test and practical Lost Foam Casting. The proper test pressure of reduced pressure test was determined by experiments not to use polystyrene and gas contents of the melt were calculated from density measurement results. The results showed that the hydrogen pick-up increased with the increased amount of polystyrene that was replaced by melt. The hydrogen pick-up was larger in the case of no degassed melt than that of degassed melt. So the hydrogen pick-up depended on the initial hydrogen content of the melt and the contact time of the melt with the decomposed gas phase. The mold evacuation decreased the hydrogen pick-up and increased the flow length of melt during Lost Foam Casting. And the error of calculated hydrogen pick-up was calculated by numerical method.

Effects of Mg Content on the Properties and Casting Characteristics of Al-2Zn-0.2Fe-xMg Alloys (Al-2Zn-0.2Fe-xMg 합금의 물성 및 주조특성에 미치는 Mg함량의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Aluminium-silicon based casting alloys have received an attention for high electrical and thermal conductivity applications, however relatively low conductivity of Al-Si alloys often limits the application. Efforts have been made to develop new high conductivity aluminium casting alloys containing no or less silicon. In this study Al-Zn-Fe based alloys were selected as the new alloys, and the effect of Mg additions on their properties and casting characteristics were investigated. As the magnesium content was increased, the tensile strength of Al-2Zn-0.2Fe based alloy was remarkably increased, while the electrical conductivity was deteriorated. It was observed that the fluidity of the alloys was generally inversely proportional to the Mg content but the hot cracking resistance was rather proportional to it. Cooling curve analyses were carried out to measure the actual solidification range and dendrite coherency temperature.

A Study on the Mechanical Properties of Al-8.6% Si-3.6% Cu Alloy Cast in Plaster Mold (석고주조(石膏鑄造)한 Al-8.6% Si-3.6% Cu 합금(合金)의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Yeo, In-Dong;Kim, Dong-Ok;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.5-13
    • /
    • 1984
  • This paper is presented for showing the effect of cooling rate on dendrite arm spacing, correlated with the chilling power of molding materials (conventional plaster, foamed plaster, silica sand) and section thickness, and also showing relationship between dendrite arm spacing and mechanical properties for an aluminum - 8.6 percent silicon - 3.6 percent copper alloy. Local solidification time $(t_f)$ and secondary dendrite arm spacing (d) could be varied widely in accordance with the molding materials and casting thickness, and the following relationship is obtained: $d=9.4t_f\;^{0.31}$ A good correlation between dendrite arm spacing and mechanical properties such as ultimate tensile strength, yield strength, hardness was found, that is, mechanical properties decreased in a linear manner with increase in log of secondary dendrite arm spacing. Ultimate tensile strength in conventional plaster mold casting decreased by 15 percent comparing with the sand casting, where as in foamed plaster mold casting, it decreased by 30 percent comparing with the sand casting. From those results, it has been verified that DAS might be the most representative parameter for predicting mechanical properties varing with the different cooling condition.

  • PDF

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

Numerical Study on Thermal Deformation of AC4C and AC7A Casting Material (AC4C와 AC7A 주조재의 열변형 수치해석적 연구)

  • Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.541-546
    • /
    • 2011
  • This study was numerically investigated on thermal deformation of AC4C and AC7A aluminum alloy casting material for manufacturing the automobile tire mold. The metal casting device was used in order to manufacture the mold product of automobile tire at the actual industrial field. The temperature distribution and the cooling time of these materials were numerically calculated by finite element analysis. Thermal deformation with stress distribution was also calculated form the temperature distribution results. The thermal deformation was closely related to the temperature difference between the surface and inside of the casting. As shown by numerical analysis result, the thermal deformation of AC7A casting material became higher than AC4C casting material. In addition, the results of displacement and stress distributions appeared to be larger at the center parts of casting than on its sides because of the shrinkage caused by the cooling speed difference.

A Development of Connection Piece Steel Casting for the Offshore Structures Using High Impact Value with Low Temperature & High Strength Casting Steel Material (고강도 및 저온 고충격 주강소재를 이용한 해양플렌트용 커넥트 주강부품 개발)

  • Kim, Tae-Eon;Park, Sang-Sik;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.151-156
    • /
    • 2010
  • The high-strength low-alloy (HSLA) steels have low carbon contents (0.05~0.25% C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.

Fabrication of Quasi-crystal Strengthened Aluminum Composites by Mechanical Milling Process (기계적 밀링 공정을 이용한 준결정 강화 알루미늄 복합재료의 제조)

  • Jang Woo Kil;Shin Kwang Seon
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2005
  • Aluminum matrix composites strengthened by the quasi-crystalline (QC) phase were developed in the present study. The icosahedral $Al_{65}Cu_{20}Fe_{15}$ phase was produced by gravity casting and subsequent heat treatment. The mechanical milling process was utilized in order to produce the Al/QC composite powders. The microstructures of the composite powders were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The composite powders were subsequently canned, degassed and extruded in order to produce the bulk composite extrusions with various volume fractions of QC. The microstructure and mechanical properties of the extrusions were examined by OM, SEM, Vickers hardness tests and compression tests. It was found that the microstructures of the Al/QC composites were uniform and the mechanical properties could be significantly improved by the addition of the QC phase.

The Strength Properties of Metal Matrix Composites by Binder Additives (금속기복합재료의 바인더 첨가제에 따른 강도 특성)

  • Park, Won-Jo;Huh, Sun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1051-1057
    • /
    • 2003
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as SiO$_2$, Al$_2$O$_3$, and TiO$_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated TiO$_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.

The Strength Properties of Metal Matrix Composites by Binder Additives (금속기복합재료의 바인더 첨가제에 따른 강도 특성)

  • Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul;Choi, Yong-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.198-203
    • /
    • 2001
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as $SiO_2,\;Al_2O_3$, and $TiO_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated $TiO_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.

  • PDF