• Title/Summary/Keyword: Aluminum(Al)

Search Result 2,469, Processing Time 0.03 seconds

Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

  • Seri, Osami
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.158-161
    • /
    • 2008
  • It is well known that iron is one of the most common impurity elements found in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as $FeAl_3$. The $FeAl_3$ particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of $FeAl_3$ particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting $FeAl_3$ free surface was an electrochemical treatment such as cathodic current density of $-2kAm^{-2}$ in a 20-30 mass% $HNO_3$ solution for the period of 300s. The corrosion characteristics of aluminum surface with $FeAl_3$ free particles are examined in a $0.1kmol/m^3$ NaCl solution. It is found that aluminum with free $FeAl_3$ particles shows higher corrosion resistance than aluminum with $FeAl_3$ particles.

A Study on the Synthesis of Aluminum Tartrate from Aluminum Chloride Solutions (염화(鹽化)알루미늄 수용액(水溶液)으로부터 Aluminum Tartrate의 합성(合成) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.54-59
    • /
    • 2011
  • An investigation on the synthesis of aluminum tartrate, one of the aluminum organic compounds, has been performed using aluminum chloride solution as a raw material. For this aim, the effect of the ratio of ethanol/Al solution and pH on the synthesis of aluminum tartrate has been examined and aluminum tartrate synthesized has also been characterized in terms of the chemical composition, X-ray diffraction pattern, particle size distribution, and SEM analysis. As a result, the synthesis more than 97% could be obtained under the conditions of pH more than 3.0 at the ratio of ethanol/Al solution of 3.0. From the chemical analysis of aluminum tartrate synthesized in this work, the content of $NH_4$, Al and C was found to be 9.10, 4.83 and 25.8%, respectively. In addition, aluminum tartrate synthesized from the aluminum chloride solution was found to be $(NH_4)_3Al(C_4H_4O_6)_3$.

A Study for Ni-Al based Intermetallics Coating onto Aluminum Substrate by Induction Heating (고주파 유도가열을 통한 알루미늄 기판재위 Ni-Al계 금속간화합물의 연소합성코팅에 관한 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.56-61
    • /
    • 2012
  • In order to investigate the possibility of Ni-Al based intermetallics coating onto aluminum substrate, the coating process for induction heating has been evaluated by microscopically analyzing the intermetallic layers coated at temperatures lower than the melting temperature of aluminum. The coating layers were divided into two parts with different microstructure along the depth. Hard $NiAl_3$ layer was found at lower parts of the coatings near the interface with aluminum substrate. This layer was formed by the diffusion of aluminum atoms from the substrate into the coating layer across the interface during the induction heating. Meanwhile, at the upper parts of the coating near the surface, a large amount of un-reacted Ni was still remained and surrounded by several Ni-Al based intermetallic compounds, such as $Ni_3Al$, NiAl and $Ni_2Al_3$ formed by the lattice diffusion.

Preparation of Aluminum Nitride Powders and Whiskers Using Aluminum(III) Salts as a Precursor

  • Jung, Woo-Sik;Chae, Seen-Ae
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.720-724
    • /
    • 2003
  • Aluminum nitride (AlN) powders were synthesized by using a mixture of an aluminum nitrate or sulfate salt and carbon (mole ratio of $Al^{3+}$ to carbon=L : 30). The AlN was obtained by calcining the mixture under a flow of nitrogen in the temperature range 1100-1$600^{\circ}C$ and then burning out the residual carbon. The process of conversion of the salt to AlN was monitored by XRD and $^{27}$ Al magic-angle spinning (MAS) NMR spectroscopy. The salt decomposed to ${\gamma}$-alumina and then converted to AlN without phase transition from ${\gamma}$-to-$\alpha$-alumina. $^{27}$ Al MAS NMR spectroscopy shows that the formation of AlN commenced at 110$0^{\circ}C$. AlN powders obtained from the sulfate salt were superior to those from the nitrate salt in terms of homogeneity and crystallinity. A very small amount of AlN whiskers was obtained by calcining a mixture of an aluminum sulfate salt and carbon at 115$0^{\circ}C$ for 40 h, and the growth of the whiskers is well explained by the particle-to-particle self-assembly mechanism.

A Study on the Synthesis of Aluminum Oxalate from Aluminum Hydroxide (수산화(水酸化)알루미늄으로부터 Aluminum Oxalate의 합성(合成) 연구(硏究))

  • Lee, Hwa-Young;Cho, Byung-Won
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.38-43
    • /
    • 2009
  • The synthesis of aluminum oxalate, one of the aluminum organic compounds, has been performed using aluminum hydroxide as a raw material. For this aim, domestic aluminum hydroxide of 99.7% purity was dissolved by oxalic acid to produce an aqueous aluminum solution. As a result, it was found that aluminum hydroxide could be dissolved almost completely by the reaction with 1.0 mole/l oxalic acid solution at $90^{\circ}C$ for 16 hr. It was strongly required to keep the ratio of ethanol/Al solution more than 2.0 for the synthesis of aluminum oxalate from the aluminum solution. Furthermore, the pH should be controlled to be more than 8.2 in order to obtain the recovery of aluminum oxalate higher than 90%. From the chemical analysis of aluminum oxalate prepared in this work, the content of $NH_4$, Al and C was found to be 14.5, 7.18 and 17.4%, respectively. Accordingly, the aluminum oxalate synthesized from the aluminum solution was confirmed to be $(NH_4)_3Al(C_2O_4)_3$ $3H_2O$.

Fabrication of AlN Powder by Self-propagating High-temperature Synthesis I. Synthesis of AlN Powder (자전고온 반응 합성법에 의한 AlN 분말의 제조 I.AlN 분말의 제조)

  • 신재선;안도환;김석윤;김용석
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.961-968
    • /
    • 1996
  • The aluminum nitride was synthesized by the self-propagating high-temperature synthesis(SHS). The synthe-sis was used aluminum powder mixed with AlN powder as reactant and the control factors affected to synthesis were considered compact density pressure of reaction gas AlN diluent content and aluminum powder size. The SHS reaction conducted with a reactant containing 50% AlN diluent under 0.8MPa nitrogen gas pressure yielded a complete conversion of aluminum powder to AlN powders. The size and purity of AlN produced were found to be comparable with that of AlN produced by the carbothermal nitrogen method.

  • PDF

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.

Synthesis of AlN Powders from AlOOH (AlOOH로부터 AlN분말의 합성)

  • Lee, Jae-Bum;Kim, Seon-Tai
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.771-776
    • /
    • 2006
  • In this study, we report a method to synthesize the aluminum nitride (AlN) powders from aluminum oxyhydroxide (AlOOH). AlOOH powders were prepared from the aluminum hydroxide ($Al(OH)_3$) by heattreatment at the reaction temperature of $350^{\circ}C$. Simple heat treatment of AlOOH in the flow of $NH_3$ gas leads to the formation of hexagonal AlN powders through intermediate conversion of ${\delta}-,\;{\gamma}-$ and ${\alpha}-Al_2O_3$. The FTIR transmission spectra show a broad peak related to Al-N bonds centered around 690 $cm^{-1}$ confirming the presence of AlN. The major peaks in Raman spectra were observed in 250 $cm^{-1}$ and 659 $cm^{-1}$. From the results, synthesized powders from the AlOOH powders were confirmed AlN powders.

A Study on the Springback Characteristics and Bracket Formabilities Enhancement of Aluminum Alloy Sheets for Autobody Application (차체용 알루미늄합금 판재의 스프링백 특성과 브래킷 성형성 향상에 관한 연구)

  • 최문일;강성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.64-76
    • /
    • 1997
  • This paper deals with development of brackets by using aluminum alloy sheets which is indispensable for weight reduction of autobody. The press formability of aluminum alloy sheet is estimated by means of tensile test, V bending test, sample manufacturing test and photograph of microstructure. The results show that the elongation, strength, work hardening exponent, plastic anisotropy coefficient of Al 6***series are better than those of Al 5***series, but for general press formability, Al 5***series are better than Al 6***series due to lower yield strength. Since most of mechanical properties of aluminum sheet are generally inferior to those of cold-rolled steel sheet, shape fixability and press formability of aluminum sheet are very poor. For making components of autobody by use of die for steel sheet application, it is essential that die should be nodified for least bending and stretching. With the modified die for aluminum, it could be possible to make brackets, the component of autobody. Microstructure of Al 5***series has fine grain and small the 2nd phase and that of Al 6***series has relatively coarse grain. Therefore, it seems that fine grain and small the 2nd phase of Al 5***series is one of the factor of lower yield strength, resistance to stamping work, formation of Luder's line.

  • PDF

AlN preparation by Self-propagation High-temperature Synthesis (SHS) in Al-N2 and Al-N2-AIN system (Al-N2와 Al-N2-AlN계에서 고온자전연소법에 의한 AlN 합성)

  • 이재령;이익규;안종관;김동진;안양규;정헌생
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.294-300
    • /
    • 2004
  • This study for preparation of aluminum nitride (AlN) with high purity was carried out by self-propagating high-temperature synthesis method in two different systems, $Al-N_{2}$ and $Al-N_{2}$-AlN, with the change of nitrogen gas pressure and dilution factor. On the occasion of $Al-N_{2}$ system, unreacted aluminum was detected in the product in spite of high nitrogen pressure, 10 MPa, This may be caused by obstructing nitrogen gas flow to inner part of molten and agglomerate of aluminum, formed in pre-heating zone. In $Al-N_{2}$-AlN system, AlN with a purity of 95% or ever can be prepared in the condition of $f_{Dil}\geq0.5$, $P_{N_{2}}\geq$ 1 MPa, and the purity can be elevated to 98% over in the condition of $f_{Dil}$ = 0.7 and $P_{N_{2}}$ = 10 MPa.