• Title/Summary/Keyword: Aluminium Thin Sheets

Search Result 4, Processing Time 0.019 seconds

Strength Characteristics for Various Spot Welding Conditions in 7075-T6 Aluminum Alloy Sheets (박판 Al 7075-T6재의 점용접시 용접조건변화에 대한 강도특성)

  • 윤한기;김건태;류인일
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.215-218
    • /
    • 1999
  • With increasing demand of energy saving, -many efforts were made to employ aluminium alloys in the automobile industry. Especially, resistance spot welding has been widely used in the steel metal joining process because of its high productively and convenience. In this paper, spot weldability of 7075-T6 aluminium thin sheets for various welding conditions were examined by series of experiments. The tensile shear strength and microstructure of welded specimens was observed, and The optimal welding conditions were found for each welding conditions.

  • PDF

Effect of Welding Current Type on Weldability in Spot Welding of Aluminum Alloy (알루미늄 합금의 점용접에서 용접전류 형태가 용접성에 미치는 영향)

  • 한용섭
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Spot welding is one of the important welding processes for the construction of thin metal sheet. Because of low investment cost, alternating welding current is widely applied for power source. Direct current type could be, however, recommened for high quality weldment. In this study, the effect of welding current type on the weldability and the electrode life in spot welding of aluminium alloy were investigated. Various welding tests were done by using three phase direct and alternating welding current, respectively. In spite of high variation of welding force, weld quality and electrode life with alternating welding current were shown better results than those with direct current for 2mm thick alumininum alloy sheets. This was due to excessive erosion of the positive electrode in direct welding current compared with the negative one. On the contrary to 2mm sheets, the welding parameters of alternating current for 1mm sheets must be carefully selected.

  • PDF

Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core

  • Magnucki, Krzysztof;Jasion, Pawel;Szyc, Waclaw;Smyczynski, Mikolaj Jan
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.325-337
    • /
    • 2014
  • The strength and buckling problem of a five layer sandwich beam under axial compression or bending is presented. Two faces of the beam are thin aluminium sheets and the core is made of aluminium foam. Between the faces and the core there are two thin binding glue layers. In the paper a mathematical model of the field of displacements, which includes a share effect and a bending moment, is presented. The system of partial differential equations of equilibrium for the five layer sandwich beam is derived on the basis of the principle of stationary total potential energy. The equations are analytically solved and the critical load is obtained. For comparison reasons a finite element model of the beam is formulated. For the case of bended beam the static analysis has been performed to obtain the stress distribution across the height of the beam. For the axially compressed beam the buckling analysis was carried out to determine the buckling load and buckling shape. Moreover, experimental investigations are carried out for two beams. The comparison of the results obtained in the analytical and numerical (FEM) analysis is shown in graphs and figures. The main aim of the paper is to present an analytical model of the five layer beam and to compare the results of the theoretical, numerical and experimental analyses.

A Study on the Welding Behavior of A3003 Aluminium Alloy Thin Sheet by Nd : YAG Laser Beam (박판 A3003 Al합금의 Nd : YAG 레이저빔 용접에 관한 연구)

  • 허인석;김병철;김도훈;김진수;이한용
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • This work was carried out to investigate the welding behavior of thin A3003 Al alloy sheets by Nd : YAG laser beam. Considering bead shape and mechanical properties, the laser pulse shapes selected were two kinds of 2-division and 3-division by varying power level and pulse duration. In order to obtain optimum conditions, the factorial design method and central composite design method were applied. Tensile test, optical microscopy, micro hardness test and TEM analysis were performed. Due to the annealing caused by thermal effect during laser welding, precipitates were coarsended. The HAZ was softened and failed during tensile test. The hardness of HAZ was lower than that of base metal, since the heat input relieved the work hardening effect and caused grain growth.

  • PDF