• Title/Summary/Keyword: Alumina oxide

Search Result 292, Processing Time 0.03 seconds

Effect of 2nd Anodization on the Pore Formation for Alumina Nano Templates (알루미나 나노템플레이트의 기공형성에 미치는 2차 양극산화의 영향)

  • Cho, S.H.;Oh, H.J.;Joo, E.K.;Yoo, C.W.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.533-539
    • /
    • 2002
  • Porous anodic aluminum oxide layer for nano templates was prepared in acidic solutions. In order to investigate effects of 2nd anodization on ordered formation behaviors of the porous oxide layers, electrochemical and microstructural studies were performed, primarily using TEM, FE- SEM, AFM, and Ultramicrotomy. The pore diameter of the anodic oxide layer increased approximately linearly with increasing voltages, and to the contrary, the pore density decreased. It was shown that 2nd anodizing on the cell base after dissolving 1st anodic oxide layer was remarkably effective for forming ordered array of the pores, comparing with the case for 1st anodization only. And for controlling the diameter of pores, widening method by chemical dissolution seemed more practical than by electrochemical methods.

STM Investigation of Methanol Adsorption on Al2O3/NiAl(110) Deposited by Pulsed Injection

  • Lee, Youn-Joo;Choi, E.;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.318-318
    • /
    • 2011
  • Etching of an ultrathin aluminum oxide film on NiAl(110) substrate by methanol is studied by home-built scanning tunneling microscopy at room-temperature. We deposited liquid methanol on thin alumina film by using a high speed solenoid valve suitable for deposition of thermally unstable molecules. It is found that only the reflection domain boundary between two domains was preferentially etched by methanol. Since the reflection domain boundary has many oxygen vacancies and irregular structures, judging from the fact, we assume that oxygen vacancies cause the chemically reactive phenomena of methanol in reflection domain boundary on an alumina film. The reactivity of the reflection domain boundary is attributed to the oxygen vacancies due to irregular structures. Similar reactivity is found on the oxygen deficient alumina produced on top of the intact alumina.

  • PDF

Effect of Purity of Alumina Ceramics on the Water Lubrication Mechanism (알루미나 세라믹스 순도에 따른 수윤활기구에 관한 연구)

  • 진동규;박흥식;전태옥
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.13-20
    • /
    • 1995
  • The present study was undertaken to investigate the purity variation of the alumina ceramics on the water lubrication mechanism. The annular surface of wear testing specimens of the alumina ceramics with different alumina purity against STB2 was rubbed in the distilled water under various sliding speed, contact pressure and sliding distance. The friction coefficient decreased lowered with formation of corrosion products due to the tribochemical reation as the sliding speed and contact load was increased. With increased sliding speed, the lower purity of 85 percent contribute largely to even degree of the friction surface, even it have about $\mu$ of 0.3 degree by the influence of a pore and impurities SiO$_{2}$. The friction surface of ceramics protacted by oxide was transfer from STB2.

A Study on the Wear Mechanism of the Alumina Ceramics for the Wear of STB2 (베어링 강(STB2)의 마멸에 미치는 알루미나 세라믹스의 마멸기구)

  • Nam, Joon-Woo;Jun, Tae-Ok;Jin, Dong-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.62-72
    • /
    • 1995
  • The present study was undertaken to investigate the dry wear mechanism of the alumina ceramics in the purity variation for the wear of STB2. The wear test was carried out under different experimental condition various sliding speed, contact pressure and sliding distance. According as the alumina purity increased, wear volume of the STB2 decreased and minimum value of wear volume was over to high speed side. According as the sliding speed and sliding distance increased, friction coefficient decreased owing to drop of the shear strength, it decresed largely owing to decreased of elastic modulus and thermal conductivity with decrease in alumina purity. Indicative of minimum, value of wear volume, low speed side was abrasive wear, high speed side was wear of heat softening. The friction surface of ceramics protacted by oxide was transfer from STB2.

  • PDF

Synthesis and Spark-plasma Sinetring of Nanoscale Al/alumina Powder by Wire Electric Explosion Process

  • Kim, Ji-Soon;Kim, H. T.;Illyin, A. P.;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.351-356
    • /
    • 2005
  • Nanoscale Al powder with thin layer of alumina was produced by Wire Electric Explosion (WEE) process. Spark-Plasma Sintering (SPS) was performed for the produced powder to confirm the effectiveness of SPS like so-called 'surface-cleaning effect' and so on. Crystallite size and alumina content of produced powder varied with the ratio of input energy to sublimation energy of Al wire ($e/e_s$): Increase in ($e/e_s$) resulted in the decrease of crystallite size and the increase of alumina content. Shrinkage curve during SPS process showed that the oxide surface layer could not be destroyed near the melting point of Al. It implied that there was not enough or no spark-plasma effect during SPS for Al/Alumina powder.

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography (AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.

Tensile characteristics of Alumina Thin Film at High Temperature (고온에서 알루미나 박막의 인장특성)

  • 선신규;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1344-1347
    • /
    • 2004
  • Recently, Study on measuring property of a micro thin film(nm ~ hundreds of ) under Thermal Mechanical loading. In this work, We perform tensile test at high temperature(1200 ) to investigate mechanical properties of alumina TGO formed under Thermal Barrier Coating. We used Digital Image Correlation method for measuring displacement, and We presented a method of tensile test for thin film at high temperature.

  • PDF

Effect of Various Supports on the Physico-chemical Properties of V-Sb Oxides in the Oxidative Dehydrogenation of Isobutane

  • Shamilov, N.T.;Vislovskiy, V.P.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.812-818
    • /
    • 2011
  • [ $V_{0.9}Sb_{0.1}O_x$ ]systems, bulk and deposited on different supports (five types of ${\gamma}$-aluminas, ${\alpha}$-alumina, silica-alumina, silica gel, magnesium oxide), have been tested in the oxidative dehydrogenation (ODH) of iso-butane. This statement is derived from the data obtained by a set of characterisation techniques(specific surface area measurements, X-ray diffraction, X-ray photoelectron spectroscopy, laser Raman spectroscopy, in situ differential scanning calorimetry and in situ diffuse reflectance-absorption infrared Fourier transform spectroscopy).

Low Temperature Catalytic Activity of Cobalt Oxide for the Emergency Escape Mask Cartridge

  • Park, Jae-Man;Kim, Deog-Ki;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.58-61
    • /
    • 2002
  • A preparation method of cobalt supported alumina catalyst for a emergency escape mask cartridge has been studied. Catalysts were prepared by incipient wetness impregnation method using pre-shaped $\gamma$=alumina powders of 70-100 mesh. The catalyst was tested in a continuous-flow reactor system and characterized by elemental analysis, BET and TGA-DTA techniques. Cobalt shows higher activity than platinum or nickel for carbon monoxide oxidation at room temperature. Optimum loading amount of cobalt was 10 wt.% for CO oxidation and the reaction activity increases gradually with the increase of calcination temperature up to $450^{\circ}C.