• Title/Summary/Keyword: Alumina Slurry

Search Result 98, Processing Time 0.026 seconds

Characterization of crystal phase evolution in cordierite honeycomb for diesel particulate filter by using rietveld refinement and SEM-EDS methods (Rietveld 정밀화법과 SEM-EDS 분석에 의한 DPF용 코디어라이트 하니컴 세라믹스의 결정성장 과정 분석)

  • Chae, Ki-Woong;Kim, Kang San;Kim, Jeong Seog;Kim, Shin-Han
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.116-126
    • /
    • 2021
  • Diesel particulate filter (DPF) is a typical application field of cordierite (Mg2Al4Si5O18) honeycomb. Green body for DPF honeycomb was extruded using slurry paste and sintered at the temperature range of 980~1450℃. Quantitative crystal phase analysis was carried out by using Rietveld refinement method for powder XRD data. In conjunction with the quantitative Rietveld analysis, SEM-EDS analysis was carried for the crystal phases (indialite, cordierite, cristobalite, alumina, spinel, mullite, pro-enstatite). After removing amorphous phase on the sintered surfaces by chemical etching method, the shape and composition of the crystal phases can be clearly identified by SEM-EDS method. By combining the Rietveld refinement method and SEM-EDS analysis, crystal phase evolution process in DPF cordierite ceramics could be clarified. In addition, the coefficient of thermal expansion (CTE) of the DPF honeycombs were measured and compared with the calculated CTEs based on the quantitative crystal phase analysis results.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Micro Power Properties of Harvesting Devices as a Function of PZT cantilever length and gross area (PZT 캔틸레버의 길이와 면적에 따른 에너지 하베스팅 장치의 출력 특성)

  • Kim, I.S.;Joo, H.K.;Song, J.S.;Kim, M.S.;Jeong, S.J.;Lee, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1246-1247
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device, PMN-PZT thick film was formed by the screen printing method on the Ag/Pd coated alumina substrate. The layer was 8 layers and slurry where a-terpineol, ethycellulose, ferro B-75001 as Vehicle, PMN-PZT powder used are fabricated by ball mill. The output power quality was be also investigated by changing the load resistance, weight and frequency. The made piezoelectric energy harvesting device was resulted from the conditions of 33$k{\Omega}$, 0.25g, 197Hz respectively. The thick film was prepared at the condition of 2.75Vrms, and its power was 230${\mu} W$ and its thickness was 56${mu}m$. The piezoelectric energy harvesting device output voltage was increased, when the load weight, load resistance was increasing and resonance frequency was diminishing. The other side, resonance frequency was diminished, when the weight was increasing. And output power was continuously it changed by load resistance, output voltage, weight and resonance frequency.

  • PDF

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Analysis of the Phase Formation and the Sinterability of K+-β/β"-Al2O3 at High Temperatures (≥1600 ℃) (K+-β/β"-Al2O3의 고온 상관계와 소결성 분석)

  • Jang, Min-Ho;Kim, Seung-Gyun;Kim, Seok-Jun;Haw, Jung-Rim;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.317-321
    • /
    • 2009
  • In order to analyze the high temperature phase formation and the sinterability of super ionic conductor $K^+-{\beta}/{\beta}"-Al_2O_3$ which is commonly used as a solid oxide electrolyte, the pure $K^+-{\beta}/{\beta}"-Al_2O_3$ powder in the ternary system $K_2O-LiO_2-Al_2O_3$ was synthesized by solid state reaction and formed to tube and disk using slip casting method and cold isostatic pressing (CIP), respectively. The slip casting was conducted in an alumina mold with the slurry containing 40 wt% of solid contents and the CIP was carried out under 20 MPa. The samples were sintered at $1600^{\circ}C$, $1700^{\circ}C$ and $1750^{\circ}C$, respectively, and their phase formation and the sintering density were investigated according to the forming method. The samples produced by CIP showed far higher ${\beta}"-Al_2O_3$ fraction as compared with those by slip casting. On the other hand, the samples by slip casting showed slightly higher sintering density. The relative density reached to about 83% at $1750^{\circ}C$ and for 1 h, independent of the forming method. In the case of 90 min socking time, the density was decreased owing to the exaggerated grain growth and the pores by $K_2O$ evaporation.

Engineering Properties of Sound Absorbing Foamed Concrete Using Bottom Ash Depending on Mix Factors (배합요인에 따른 바텀애시 미분말을 사용한 흡음형 기포콘크리트의 공학적 특성)

  • Kim, Jin-Man;Kang, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.63-70
    • /
    • 2009
  • This study is part of an ongoing research project on the development of a sound-absorbing lightweight foamed concrete manufactured by a hydro-thermal reaction between silica and calcium. As the silica source, pulverized bottom ash was used, and as several cementitious powders of ordinary portland cement, alumina cement and calcium hydroxide were used. Manufacture of foamed concrete was accomplished using the pre-foaming method to make a continuous pore system, which is the method of making the foam by using a foaming agent, then making the slurry by mixing the foam, water, and powders. The experiment factors are W/B, foam agent dilution ratio, and foam ratio, and test items are compressive strength, dry density, void ratio, and absorption rate, as evaluated by NRC. The experiment results showed that the sound absorption of lightweight foamed concrete satisfied NRC requirements for the absorbing materials in most of the experiments. It is thus concluded that foam ratio was the most dominant factor, and significantly affected all properties of lightweight foamed concrete in this study. W/B rarely affected total void ratio and continuous void ratio as well as compressive strength, and dry density and foam agent dilution ratio also had little effect onalmost all properties. The analysis of the correlation between NRC, absorption time, continuous void ratio, and absorption time showed that the interrelationship of the continuous void ratio was high.

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

Phosphorus Modified Co/Al2O3 Fischer-Tropsch Catalyst for a Slurry Phase CSTR with Enhanced Hydrothermal and Mechanical Stability (수열특성 및 기계적 안정성의 개선으로 슬러리상 CSTR에 적합한 P 첨가 알루미나 기반의 Fischer-Tropsch 합성용 코발트 촉매)

  • Jung, Gyu-In;Ha, Kyoung-Su;Park, Seon-Ju;Kim, Du-Eil;Woo, Min-Hee;Jun, Ki-Won;Bae, Jong-Wook;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.229-237
    • /
    • 2012
  • Phosphorus was incorporated into Co/$Al_2O_3$ catalyst for FTS by impregnating an acidic precursor, phosphoric acid, in ${\gamma}-Al_2O_3$ support to improve the mechanical strength, the hydrothermal stability of the catalyst particle, and the catalytic performance as well. Surface characterization techniques such as FT-IR revealed that $AlPO_4$ phase was generated on the surface of the P-modified catalyst. The addition of phosphorus was found to alleviate the interaction between cobalt and alumina surface, and to increase reducibility of catalyst. The catalytic activity such as $C_{5+}$ productivity and turnover frequency (TOF) was calculated to evaluate catalytic performance. The influence of calcination temperature of the $Al_2O_3$ containing 2 wt.% P on the catalytic performance was also investigated. Through hydrothermal stability test and XRD analysis, the P-modified catalyst had strong resistant to the pressurized and hot $H_2O$. The mechanical strength of the P-modified catalyst was also examined through an in-house fluidized-bed vessel, and it was found that the catalyst fragmentation could be successfully suppressed with P. Taken as a whole, the best performance was shown to be at 1~2 wt.% P in alumina and at the calcination temperature of $500^{\circ}C$.